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Appendices
A. Derivation of the Fourier coefficients of the Effective Hamiltonian for SE

and NOVEL
This section provides a step-by-step derivation for the calculation of the Fourier Coef-
ficients of the effective Hamiltonian for the SE and NOVEL experiments mentioned at
the end of section 2.1 in the main text.

In the special case, where the pulse amplitude ω1,S and phase offset ϕ in Eq. (2)
in the main text are time-independent, we can calculate the Fourier coefficients of the
Hamiltonian of Eq. (7) in the main text analytically. If we irradiate sufficiently long
such that the condition τm → ∞ is reached, the modulation period approaches zero i.e.
ωm = 2π

τm
= 0. Thus, the Fourier coefficients of the Hamiltonian only depend on index ℓ

and are given by
a

(ℓ)
ξχ = 1

τm

∫ ∞

−∞
a

(S)
ξχ (t) e−iℓωeff,Stdt. (S.1)

Compare this equation with Eq. (6) in the main text. The time-dependent elements of
the rotation matrix a(S)

ξχ (t) can be calculated as

a
(S)
ξχ (t) = 2 Tr

{
Ŝξ (t) Ŝχ

}
. (S.2)

According to Eq. (3) in the main text we only need to compute a(S)
zχ (t) with χ ∈ {x, y, z}.

Therefore, we need to find an analytical expression for Ŝz (t). First we need to transform
the operator Ŝz from the laboratory frame to the tilted frame, where the direction of
the effective field is aligned with the +z-axis (see Fig. S1) and afterwards we need to
transform to an interaction frame with respect to ωeff,StŜ

′
z.
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Figure S1: Illustration of the effective field direction and the angle θ during sufficiently
long irradiation such that the condition τm → ∞ is reached. The angle θ in
good DNP sequences is usually very small and exaggerated in the figure for
clarity.

The effective field can be computed according to Fig. S1

ωeff,S =
√
ω2

1,S + Ω0,S (S.3)

and the angle θ by

θ = arctan
(
ω1,S
Ω0,S

)
. (S.4)
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Transformation into the tilted frame leads to

Ŝ′
z = Û−1

TFŜzÛTF

= Ŝz cos (θ) + Ŝx sin (θ)
(S.5)

with ÛTF = e−iθŜy . Transformation of Eq. (S.5) into the interaction frame with ωeff,StŜ
′
z

gives

Ŝz (t) = Û−1
S Ŝ′

zÛS

= Ŝz cos (θ) + sin (θ)
(
Ŝx cos (ωeff,St) − Ŝy sin (ωeff,St)

)
,

(S.6)

where ÛS = e−iωeff,StŜ′
z . To evaluate Eq. (S.2) we can use the following rule

Tr
{
ŜξŜχ

}
=
{1

2 , if ξ = χ

0, if ξ ̸= χ
(S.7)

Therefore, we get for the desired elements of the rotation matrix

a(S)
zx (t) = sin (θ) cos (ωeff,St) = sin (θ) 1

2
(
eiωeff,St + e−iωeff,St

)
(S.8)

a(S)
zy (t) = − sin (θ) sin (ωeff,St) = − sin (θ) 1

2i
(
eiωeff,St − e−iωeff,St

)
(S.9)

a(S)
zz (t) = cos (θ) (S.10)

Because the elements of the rotation matrix are real, the Fourier coefficients obey the
following symmetry rules

a
(ℓ)
ξχ =

(
a

(−ℓ)
ξχ

)∗
, (S.11)

where
(
a

(−ℓ)
ξχ

)∗
denotes the complex-conjugate of the input

(
a

(−ℓ)
ξχ

)
. Evaluation of Eq.

(S.1) using L’Hôpital’s rule and Eq. (S.11) leads to the following Fourier coefficients

a(−1)
zx = sin (θ)

2 (S.12)

a(0)
zx = 0 (S.13)

a(1)
zx = sin (θ)

2 (S.14)

a(−1)
zy = − i sin (θ)

2 (S.15)

a(0)
zy = 0 (S.16)

a(1)
zy = i sin (θ)

2 (S.17)

a(−1)
zz = 0 (S.18)
a(0)

zz = cos (θ) (S.19)
a(1)

zz = 0. (S.20)
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Expressing the effective Hamiltonian relevant for DNP in terms of the ladder operators
as in Eqs. (10)-(11) of the main text by using a(ℓ)

± = a
(ℓ)
zx ∓ ia

(ℓ)
zy leads to

B

4 sin (θ)
(
Ŝ−Î+ + Ŝ+Î− − Ŝ+Î+ − Ŝ−Î−

)
, (S.21)

which is the same as Eq. (15) in the main text.

B. Complete Derivation for Diagonalization of the Infinite-dimensional
Floquet Matrix

This section provides a step-by-step derivation of the results summarized in section 2.4
in the main text. The aim is to diagonalize the diagonal block of the infinite-dimensional
Floquet matrix Ĥ(0) as given in Eq. (26) or Eq. (34) in the main text

Ĥ(0) = Ω0,SŜz +AzzŜzÎz +BŜzÎx + ω0,IÎz + ω(max)
1,S

a0
2 Ŝx. (S.22)

The same unitary transformation that is required to diagonalize this diagonal block in
Eq. (S.22) is then applied to the side-diagonal parts of the Floquet Hamiltonian Ĥ(±q)

as given in Eq. (27) in the main text. As already outlined in section 2.4 in the main
text this Hamiltonian cannot easily be diagonalized directly. In principle, analytical
diagonalization is feasible, but leads to results that are too involved for interpretation.
Therefore, we diagonalize in a first step the reduced Hamiltonian containing all spin
terms (Eq. (35) in main text)

Ĥ1 = Ω0,SŜz +AzzŜzÎz +BŜzÎx + ω0,IÎz. (S.23)

Afterwards, the same unitary transformation that is used to diagonalize Ĥ1 is applied to
the remaining term ω(max)

1,S
a0
2 Ŝx in Eq. (S.22) compared to Eq. (S.23). In a second unitary

transformation, part of the remaining off-diagonal terms resulting from ω(max)
1,S

a0
2 Ŝx are

removed by transformation to the eigenbasis of a Hamiltonian that results from their
combination with the already diagonal part Hamiltonain Ĥ1 obtained in the first step.

Let’s start with the first diagonalization that takes place in the I-spin space. Without
loss of generality we restrict our discussion here to negative Larmor frequencies ω0,I (see
Fig. S2). The unitary rotation in the eigenbasis of Ĥ1 can be described by a unitary
matrix

Û1 = exp
(

−i
(
−ηαŜ

αÎy + ηβŜ
β Îy
))

, (S.24)

where Ŝα = 12/2+ Ŝz and Ŝβ = 12/2− Ŝz. The definitions of ηα and ηβ can be obtained
from Fig. S2 and are given as

ηα = arctan
(

−B
2ω0,I +Azz

)
(S.25)

ηβ = arctan
(

−B
2ω0,I −Azz

)
. (S.26)

4



The angles are chosen so that 0◦ ≤ ηα, ηβ ≤ 90◦. The Hamiltonian Ĥ1 in Eq. (S.23)
after rotation to the eigenbasis can be calculated as

Ĥ′
1 = Û−1

1 Ĥ1Û1

= Ω0,SŜz + ω′
0,IÎz +A′ŜzÎz

(S.27)

with

ω′
0,I = (ω12 + ω34) /2 (S.28)
A′ = ω12 − ω34 (S.29)

and the nuclear frequencies

ω12 =
(
ω0,I + Azz

2

)
cos (ηα) − B

2 sin (ηα) (S.30)

ω34 =
(
ω0,I − Azz

2

)
cos (ηβ) − B

2 sin (ηβ) . (S.31)

The total Hamiltonian in Eq. (S.22) in the basis of this first transformation is thus given
as

Ĥ(0) ′ = Û−1
1 Ĥ(0)Û1

= Û−1
1

(
Ĥ1 + ω(max)

1,S
a0
2 Ŝx

)
Û1

= Û−1
1 Ĥ1Û1 + ω(max)

1,S
a0
2 Û

−1
1 ŜxÛ1

= Ĥ′
1 + ω(max)

1,S
a0
2 Û

−1
1 ŜxÛ1

= Ω0,SŜz + ω′
0,IÎz +A′ŜzÎz + ω(max)

1,S
a0
2
(
Ŝx cos (η) + 2ŜyÎy sin (η)

)
(S.32)

In going from the first to the second line on the right-hand side, we inserted Eq. (S.22)
and Eq. (S.23). For the transformation of the third to the fourth line, we have used Eq.
(S.27). In Eq. (S.32), η = 1

2 (ηα + ηβ) and the angle 2η is shown in Fig. S2. 2η can
take values from 0◦ to 180◦. The case 2η ≈ 0◦ is obtained for spin systems in the weak
coupling regime, where |Azz|, |B| ≪ |ω0,I|. 2η ≈ 180◦ is attained in the regime of very
strong secular hyperfine coupling, meaning that |Azz| ≫ |ω0,I|. The spin operator Ŝx in
this first eigenframe transforms to (compare Eq. (44) in main text)

Û−1
1 ŜxÛ1 = Ŝx cos (η) + 2ŜyÎy sin (η)

= Ŝx cos (η) + 1
2
(
Ŝ+Î− + Ŝ−Î+ − Ŝ+Î+ − Ŝ−Î−

)
sin (η)

(S.33)

Note that this is the transformation used in Eq. (S.32) when going from the second
last to the last line on the right-hand side. Using Eq. (S.33), the off-diagonal blocks
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in the TOP and XiX sequence containing the Fourier components Ĥ(q′) = Ĥ(±q) =
1
2ω

(max)
1,S

(
a|q′| ∓ ib|q′|

)
Ŝx after the first diagonalization step can be written as

Ĥ(q′) ′ = Ĥ(±q) ′ = Û−1
1 Ĥ(±q)Û1 = 1

2ω
(max)
1,S

(
a|q′| ∓ ib|q′|

)
Û−1

1 ŜxÛ1

= 1
2ω

(max)
1,S

(
a|q′| ∓ ib|q′|

) (
Ŝx cos (η) + 2ŜyÎy sin (η)

)
= 1

2ω
(max)
1,S

(
a|q′| ∓ ib|q′|

)(
Ŝx cos (η) + 1

2
(
Ŝ+Î− + Ŝ−Î+ − Ŝ+Î+ − Ŝ−Î−

)
sin (η)

)
.

(S.34)

To obtain this result, we first inserted the definition of the off-diagonal blocks containing
the Fourier components Ĥ(±q) and then applied Eq. (S.33). For the XiX DNP sequence
we achieved already the desired result because the Fourier coefficient a0 is 0 in this
case and therefore Ĥ(0) = Ĥ1. Up to this point, we did not apply any approximation
and the result in Eq. (S.27) is still exact. However, each of the diagonal blocks of the
infinite-dimensional Floquet matrix after this first unitary transformation Ĥ(0) ′ as given
in Eq. (S.32) still contains non-zero off-diagonal elements, unless a0 = 0. For the TOP
and TPPM DNP sequence a0 ̸= 0 and therefore, we need to apply a second unitary
transformation. As outlined above, for spin systems in the weak coupling regime the
angle η is very small. Unless ω(max)

1,S ≪ ω′
0,I, the term 2ω(max)

1,S ŜyÎy sin (η) in Eq. (S.32)
is much smaller than the diagonal elements that it connects. Therefore, for the second
diagonalization step we neglect this term in Eq. (S.32) and diagonalize the truncated
Hamiltonian

Ĥ(0)
tr.

′ = Ω0,SŜz + ω′
0,IÎz +A′ŜzÎz + ω′

1,SŜx (S.35)

with ω′
1,S = ω(max)

1,S
a0
2 cos (η). Diagonalization of Eq. (S.35) takes place in the subspace

of the S-spin. Thus, we need to take into account the sign of Ω0,S (see Fig. S2). The
upper binary operator in the following equations corresponds to the +Ω0,S case and the
lower one to the −Ω0,S case, respectively. The unitary matrix that rotates Eq. (S.35) in
its eigenbasis can be written as

Û2 = exp
(

−i
(
±θαŜyÎ

α ± θβŜyÎ
β
))

(S.36)

with Îα = 12/2 + Îz and Îβ = 12/2 − Îz. The angles θα and θβ are shown in Fig. S2 for
the two cases and can be calculated as

θα = arctan
(

±ω′
1,S

Ω0,S + A′

2

)
(S.37)

θβ = arctan
(

±ω′
1,S

Ω0,S − A′

2

)
. (S.38)

The angles θα and θβ can take any values from 0◦ to 90◦. In the doubly tilted frame the
truncated Hamiltonian Ĥ(0)

tr.
′ in Eq. (S.35) can be expressed as

Ĥ(0)
tr.

′′ = Û−1
2 Ĥ(0)

tr.
′
Û2 = Ω′′

0,SŜz + ω′
0,IÎz +A′′ŜzÎz (S.39)
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with

Ω′′
0,S = (ω13 + ω24) /2 (S.40)
A′′ = ω13 − ω24 (S.41)

and the electron-spin transition frequencies

ω13 =
(

Ω0,S + A′

2

)
cos (θα) ± ω′

1,S sin (θα) (S.42)

ω24 =
(

Ω0,S − A′

2

)
cos (θβ) ± ω′

1,S sin (θβ) . (S.43)

The angle 2θ = (θα − θβ) is depicted in Fig. S2 and can take values from 0◦ to 180◦.
Note that Eq. (S.39) is the same equation as Eq. (51) in the main text. The spin
operator Ŝx in the doubly tilted frame can be expressed as

Û−1
2 Û−1

1 ŜxÛ1Û2 = Û−1
2

(
Ŝx cos (η) + 2ŜyÎy sin (η)

)
Û2

= cos (η)
{

cos (θα) ŜxÎ
α + cos (θβ) ŜxÎ

β ± sin (θα) ŜzÎ
α

± sin (θβ) ŜzÎ
β
}

+ sin (η)
(
2ŜyÎy cos (θ) ± Îx sin (θ)

)
,

(S.44)

where we used Eq. (S.33) to obtain the final line. The side-diagonal parts of the Floquet
Hamiltonian Ĥ(±q) containing the spin operator Ŝx in the doubly tilted frame can thus
be calculated as

Ĥ(q′) ′′ = Ĥ(±q) ′′ = Û−1
2 Û−1

1 Ĥ(±q)Û1Û2 = Û−1
2 Ĥ(±q) ′

Û2

= 1
2ω

(max)
1,S

(
a|q′| ∓ ib|q′|

)[
cos (η)

{
cos (θα) ŜxÎ

α + cos (θβ) ŜxÎ
β ± sin (θα) ŜzÎ

α

± sin (θβ) ŜzÎ
β
}

+ sin (η)
(
2ŜyÎy cos (θ) ± Îx sin (θ)

)]
(S.45)

as already presented in the main text by Eq. (56). First we inserted Eq. (S.34) and
then we used Eq. (S.44). In the doubly tilted frame, the total Hamiltonian as given in
Eq. (S.32) including also the term 2ŜyÎy sin (η) can be expressed as

Ĥ(0) ′′ = Û−1
2

(
Ĥ(0)

tr.
′ + 2ŜyÎy sin (η)

)
Û2 = Ω′′

0,SŜz + ω′
0,IÎz +A′′ŜzÎz

+ ω′
1,S sin (η)

[1
2
(
Ŝ+Î− + Ŝ−Î+ − Ŝ+Î+ − Ŝ−Î−

)
cos (θ) ± Îx sin (θ)

] (S.46)

We can now use the pre-factors in front of the ZQ- and DQ-operators in Eq. (S.46) to
derive the Fourier coefficients of the Hamiltonian in operator-based Floquet theory for
SE DNP and NOVEL. We can identify for the said operators a pre-factor of

1
2ω

′
1,S sin (η) cos (θ) ≈ 1

2ω
(max)
1,S

B

2ω0,I
cos (θ) . (S.47)
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By restricting our discussion to weakly coupled spin systems, i.e. |Azz|, |B| ≪ |ω0,I|, we
can invoke the small angle approximation for the angle η. This results in cos (η) ≈ 1
and sin (η) ≈ B

2ω0,I
, which was used in the second step of Eq. (S.47). We also used the

relation ω′
1,S = ω(max)

1,S
a0
2 cos (η) and a0 = 2 in that step.

For the SE experiment we irradiate on the electron spin with a microwave offset of
Ω0,S = ±ω0,I. Usually Ω0,S ≫ ω(max)

1,S , so that θ ≈ 0 and cos (θ) ≈ 1. Please note that this
approximation was also used in operator-based Floquet treatment to derive the scaling
factor of the SE experiment at the end of section 2.1 in the main text. Thus, according

to Eq. (S.47) we obtain B
4

ω
(max)
1,S
ω0,I

, which is the same as the Fourier coefficients of the
Hamiltonian in operator-based Floquet treatment.

In case of the NOVEL experiment we irradiate on-resonance i.e. Ω0,S = 0. According
to Fig. S2 this results in

θα = arctan
(
ω′

1,S
A′

2

)
(S.48)

θβ = arctan
(

−ω′
1,S

−A′

2

)
(S.49)

and consequently to 2θ = (θα − θβ) = 0 and cos (θ) = 1. Combined with the well
known resonance condition for the NOVEL experiment ω(max)

1,S = ω0,I, we obtain B
4 from

Eq. (S.47) as the Fourier coefficients of the Hamiltonian in operator-based Floquet
treatment.
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- First unitary transformation for negative ω0,I:

z

x

ω0,I

+Azz

2

-Azz

2

+B
2-B

2

ωα,S

ηα

ωβ,S

ηβ

2η

- Second unitary transformation:

positive Ω0,S :

z

x

Ω0,S

+A′

2

-A′

2

ω′
1,S

ωα,I

θα

ωβ,I
θβ

2θ

negative Ω0,S :

z

x

Ω0,S

+A′

2

-A′

2

ω′
1,S

ωβ,I
θβ

ωα,I

θα

2θ

Figure S2: Semi-classical magnetization vector picture for the two unitary transforma-
tions. In the first step the diagonalization is done in the I-spin space, whereas
the second transformation takes place in the S-spin space.

9



C. EPR Pulse Optimization
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Figure S3: Optimization of pulse amplitudes (digital scale) for electron spin in the trityl
radical using a two-pulse sequence

(
π
2
)

− τ − (π) − τ − det. with a two-step
phase cycle for the first pulse resp. the detection e.g. (±x, x,±1). τ = 600
ns and a number of shots of 100 was used. The digital scale of 0.14 was
found to be the optimal scale for a π

2 pulse of length 16 ns (red dashed line).
The experiment was conducted at the center of the resonator. The somewhat
strange shape of the amplitude optimization with a saddle point around a
digital scale of ∼ 0.27 can be explained by instantaneous diffusion (we use
a rather high electron concentration of 5 mM trityl.) However, both digital
amplitudes (0.14 and 0.27) lead to similair results for the EPR experiments
like field sweep and resonator profile. No effect is expected for the experiments
relevant for DNP as discussed in the main text.
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D. Field-swept Echo-detected EPR
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Figure S4: Field-swept echo-detected EPR spectrum of the trityl radical (black circles)
obtained with a two-pulse sequence

(
π
2
)

− τ − (π) − τ − det. with a two-
step phase cycle for the first pulse resp. the detection e.g. (±x, x,±1). The
optimal scale of 0.14 was used for all pulses and τ = 600 ns. The number of
shots was 100. The center of the profile was estimated to be νc = 9.78 GHz
corresponding to Bc = 3427.2 G. The magnetic field was swept in the range
Bc ± 40 G in steps of 0.1 G, while the mw frequency was kept constant at
9.78 GHz. The experimental data points (black circles) were fitted by three
Gaussian lines. The central peak has a FWHM of 6.23 MHz.
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E. Resonator Profile
The experiment to record a resonator profile as shown in Fig. S5 is a three-pulse exper-
iment. The first pulse serves as a nutation pulse and is incremented from 0 to 128 ns in
steps of 2 ns at maximum power (digital scale = 1). Electron spin magnetization after
delay T ∼ 5T2,e is observed with a two-pulse Hahn echo experiment. The experiment
is measured for different offsets Ω0,S with respect to the center of the resonator. The
resulting resonator profile indicates the largest B1 field (or strongest Rabi frequency
ω1,S) that can be obtained at a certain offset Ω0,S.

9.5 9.6 9.7 9.8 9.9 10 10.1

8 [GHz]

10

15

20

25

30

35

40

45

8
1
;S

[M
H

z]

Figure S5: Measured resonator profile for the trityl radical using an echo-detected nu-
tation pulse sequence (βflip) − T −

(
π
2
)

− τ − (π) − τ − det. with a two-step
phase cycle for the second pulse resp. the detection e.g. (±x, x,±1). The
optimal scale of 0.14 was used for the second and third pulse. T = 5000 ns
and τ = 600 ns were used as delays. The number of shots was 50. The mw
frequencies of all pulses are swept from 8.5 to 10.06 GHz in 0.01 GHz steps.
The external magnetic field is swept in similar fashion, so that the magnetic
field is on-resonance with the mw frequency. The length of the first pulse was
increased from 0 to 128 ns in steps of 2 ns at every field/frequency step with a
fixed scale of 1. The nutation frequency was determined by taking the maxi-
mal frequency of the Fourier transformation of the nutation curve. The center
of the resonator corresponds to the point

(
ν = 9.78 GHz, ω1,S

2π = 42.97 GHz
)
.
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F. Non-linearity of the Travelling Wave Tube (TWT) Amplifier
The experiment to record the non-linearity of the TWT amplifier as shown in Fig. S6 is
a three-pulse experiment. The first pulse serves as a nutation pulse and is incremented
from 0 to 128 ns in steps of 2 ns at various digital scale. Electron spin magnetization after
delay T ∼ 5T2,e is observed with a two-pulse Hahn echo experiment. The experiment is
measured at the center of the resonator ∼ 9.78 GHz. Fitting for both the dependence
of Rabi frequency on digital scale and the dependence of digital scale on required Rabi
frequency of the TWT non-linearity curve by polynomials of fourth order allows the
mapping between the digital scale and the Rabi frequency. The TWT non-linearity
curve together with the resonator profile is used to compensate the limited width of
the microwave resonator mode and differences in non-linearity of the TWT during the
acquisition of a DNP profile.
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Figure S6: TWT non-linearity measured with the trityl radical using an echo-detected
nutation pulse sequence (βflip)−T −

(
π
2
)
−τ−(π)−τ−det.. The phases of all

pulses was set to +x. The optimal scale of 0.14 was used for the second and
third pulse. T = 5000 ns and τ = 600 ns were used as delays. The number
of shots was 50. The scale of the first pulse was changed from 0 to 1 in 0.02
steps. The length of the first pulse was increased from 0 to 512 ns in steps
of 2 ns at every scale. The nutation frequency was determined by taking the
maximal frequency of the Fourier transformation of the nutation curve. The
experiment was measured at the center of the resonator. The experimental
data were fitted to a fourth degree polynomial in a forward fashion (mapping
digital scale to nutation frequency) and later in a backward fashion (mapping
nutation frequency to digital scale). The parameters of the backward fit were
later used to calculate the digital scale for a desired nutation frequency.
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G. NMR Pulse Optimization
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Figure S7: Optimization of pulse amplitudes for bulk proton spins in the DNP sample.
The pulses on the proton channel were optimized by varying the amplitude
of the first pulse of the solid echo in the pulse sequence as shown in Fig.
10. The solid effect at Ω0,S

2π = 14.83 MHz was used as DNP mechanism to
optimize the pulse amplitude on the OpenCore spectrometer.
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H. Relaxation Measurements on Electron spins
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Figure S8: Inversion recovery experiment to determine T1,e for the electron spin (black
circles) with mono-exponential fit (red) resulting in T1,e = 2.468 ms. The
π-pulse for inversion was a chirp pulse of 400 ns length with digital scale of 1.
10 shots were used and the interpulse delay for the Hahn echo was τ = 600
ns. A π

2 -pulse of 16 ns resp. π-pulse of 32 ns with a scale of 0.14 were used
for the Hahn echo pulses.
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Figure S9: Two-pulse ESEEM data (black circle) with stretched exponential fit (red)
resulting in a phase memory time τm = 3.437 µs. A π

2 -pulse of 16 ns resp.
π-pulse of 32 ns with a scale of 0.14 were used for the Hahn echo. Signals
from 10 shots were added.
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I. Relaxation Measurements on Nuclear Spins
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Figure S10: Proton saturation recovery experiment (black circles) with mono-
exponential fit (red) resulting in T1,n = 32.58 s.
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J. Comparison of FS-XiX to XiX for Various Pulse Lengths
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Figure S11: DNP profile for XiX (blue line) and FS-XiX (red line) recorded at X-band
(0.35 T) with a Rabi frequency of ω1,S

2π = 4 MHz and a pulse length τp = 5
ns. Further experimental parameters are given in section 5 of the main
text. The dots and asterisks represent the estimated enhancement ϵZQ/DQ
as given in Eq. (13) in the main text. Note that for the FS-XiX we divided
the Fourier coefficient b1 by 4

π , so that the sine wave has the same amplitude
as for the rectangular pulses in the XiX case.
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Figure S12: DNP profile for XiX (blue line) and FS-XiX (red line) recorded at X-band
(0.35 T) with a Rabi frequency of ω1,S

2π = 4 MHz and a pulse length τp = 9
ns. Further experimental parameters are given in section 5 of the main
text. The dots and asterisks represent the estimated enhancement ϵZQ/DQ
as given in Eq. (13) in the main text. Note that for the FS-XiX we divied
the Fourier coefficient b1 by 4

π so that the sine wave has the same amplitude
as the rectangular pulses in the XiX case.
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Figure S13: DNP profile for XiX (blue line) and FS-XiX (red line) recorded at X-band
(0.35 T) with a Rabi frequency of ω1,S

2π = 4 MHz and a pulse length τp = 45
ns. Further experimental parameters are given in section 5. The dots and
asterisks represent the estimated enhancement ϵZQ/DQ as given in Eq. (13)
in the main text. Note that for the FS-XiX we divided the Fourier coefficient
b1 by 4

π , so that the sine wave has the same amplitude as the rectangular
pulses in the XiX case.
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K. Relation Between Operator-based Floquet Theory and Matrix-based
Floquet Theory in the Weak Irradiation Regime

A connection between the Fourier indices c1 and c2 connecting degenerate Floquet states
with the indices from triple-mode Floquet theory e.g. k0 and ℓ0 can be obtained by using
quaternions.

Lets start with Eq. (9) in section 2.1 of the main text

n0|ω0,I| + k0ωm + ℓ0ωeff,S = 0 , (S.50)

which can be rewritten as
n0

|ω0,I|
ωm

+ ℓ0
ωeff,S
ωm

= −k0. (S.51)

The effective field after a time τm for the TOP DNP, XiX DNP and the TPPM DNP
experiments can be calculated using quaternions as already described in Ref. [1], Ref.
[2] and [3], respectively. We first discuss the case for the XiX DNP sequence. Here we
get as an analytical expression for the effective field

ωeff,S = 1
τp

arccos
(

1 − 2 cos2 (θ) sin2
(
ωaτp

2

))
= 1
τp

arccos
(
cos2 (θ) cos (ωaτp) + sin2 (θ)

)
= ωm

π
arccos

(
cos2 (θ) cos (ωaτp) + sin2 (θ)

) (S.52)

with cos (θ) = Ω0,S
ωa

and ωa =
√
ω2

1,S + Ω2
0,S. In the weak irradiation regime, i.e. ω1,S ≪

ωm we can invoke the small-angle approximation for θ e.g. (Ω0,S ≫ ω1,S) so that cos (θ) ≈
1 and sin (θ) ≈ 0. Note that this approximation was already used at the end of section
2.1 of the main text to derive the Fourier coefficient of the Hamiltonian for the SE
experiment. Thus, the trigonometric expression in Eq. (S.52) simplifies to

arccos
(
cos2 (θ) cos (ωaτp) + sin2 (θ)

)
≈ arccos (cos (Ω0,Sτp))

= arccos
(

cos
(
π

Ω0,S
ωm

))
= π

Ω0,S
ωm

:= F (Ω0,S, ωm) .

(S.53)

In the first step of Eq. (S.53) we used the approximation cos (θ) ≈ 1 and ωa =√
ω2

1,S + Ω2
0,S ≈ Ω0,S as outlined above. At this point we have to think about the

range of values in which we calculate the effective field ωeff,S. For our numerical im-
plementation of operator-based Floquet theory (see appendix L) we restricted the value
of ωeff,S to the range {ωeff,S ∈ Z | − ωm

2 ≤ ωeff,S ≤ ωm
2 }, resulting in the restriction

{F (Ω0,S, ωm) ∈ Z | − π
2 ≤ F (Ω0,S, ωm) ≤ π

2 } for the range of the function F (Ω0,S, ωm)
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(see last line of Eq. (S.52)). Therefore, we need a shifting parameter fs that shifts the
output of F (Ω0,S, ωm) as defined in Eq. (S.53) within the interval

[
−π

2 ,
π
2
]

resulting in

F (Ω0,S, ωm) = π
Ω0,S
ωm

+ fsπ , (S.54)

where fs ∈ N0 . At this point it seems artificial that the shift parameter fs needs to be
an integer. This fact will be more clear later (see Eq. (S.58)). Insertion of Eq. (S.54)
into Eq. (S.53) resp. Eq. (S.52) gives

ωeff,S ≈ 1
τp

(
π

Ω0,S
ωm

+ fsπ

)
≈ ωm

(Ω0,S
ωm

+ fs

) , (S.55)

where we used 1
τp

= ωm
π in the last step. Eq. (S.55) can now be inserted into Eq. (S.51)

to yield
n0

|ω0,I|
ωm

+ ℓ0

(Ω0,S
ωm

+ fs

)
= −k0. (S.56)

This equation can be rearranged to

Ω0,S = −
(
k0
ℓ0

+ fs

)
ωm + n0

ℓ0
|ω0,I|. (S.57)

We can now compare this result to Eq. (66) and Eq. (67) in the main text. First, we
can confirm that for the DQ case we have opposite signs for ℓ0 and n0 and for the ZQ
case we have the same signs for ℓ0 and n0. This was already outlined in section 2.1 of
the main text. A more important result is the relation

q′ = c2 − c1 = −
(
k0
ℓ0

+ fs

)
, (S.58)

which connects the Fourier indices c1 and c2 of the Floquet space in matrix-based Flo-
quet theory with the indices k0 and ℓ0 from triple-mode Floquet theory. This relation
between indices depends on the definition of the range of allowed values for ωeff,S, which
is manifested by the shift parameter fs in Eq. (S.58). Let’s consider a concrete example
by focusing on the ZQ resonance at Ω0,S

2π ≈ 48 MHz for the XiX DNP sequence. We use
τp = 15 ns resulting in ωm

2π = 33.333 MHz, c2 − c1 = q′ = 1 for this case and k0 = 0,
ℓ0 = ±1 and n0 = ±1. The fraction Ω0,S

ωm
π = 1.4373π results in fs = −1 in order to be

within the interval
[
−π

2 ,
π
2
]
. The exact same result for fs would be obtained by inserting

c2 − c1 = q′ = 1, k0 = 0 and ℓ0 = ±1 into Eq. (S.58).
For TOP DNP the effective field is given as [1]

ωeff,S = 1
τp

arccos
(

cos
(Ω0,Sτd

2

)
cos

(
ωaτp

2

)
− cos2 (θ) sin

(Ω0,Sτd
2

)
sin
(
ωaτp

2

))
(S.59)
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with cos (θ) = Ω0,S
ω1,S

and ωa =
√
ω2

1,S + Ω2
0,S. With the same approximations for the

trigonometric part of Eq. (S.59) e.g. cos (θ) ≈ 1 and ωa =
√
ω2

1,S + Ω2
0,S ≈ Ω0,S, as

already used in the XiX case, we obtain

arccos
(

cos
(Ω0,Sτd

2

)
cos

(Ω0,Sτp
2

)
− sin

(Ω0,Sτd
2

)
sin
(Ω0,Sτp

2

))
. (S.60)

Using trigonometric relations, this can further be simplified to

arccos
(

cos
(1

2Ω0,S (τd + τp)
))

= arccos
(

cos
(1

2Ω0,Sτm

))
= arccos

(
cos

(
π

Ω0,S
ωm

))
.

(S.61)

This is the same result as obtained in Eq. (S.53) for the XiX DNP sequence.
In the case of TPPM DNP the effective field has the form [3]

ωeff,S = 1
τp

arccos
(

cos2
(
ωaτp

2

)
−
[
sin2 (θ) cos (ϕ) + cos2 (θ)

]
sin2

(
ωaτp

2

))
(S.62)

with cos (θ) = Ω0,S
ω1,S

, ωa =
√
ω2

1,S + Ω2
0,S and ϕ is the phase with which the TPPM

sequence is modulated. Again invoking the approximations for the weak irradiation
regime, e.g. cos (θ) ≈ 1, sin (θ) ≈ 0 and ωa =

√
ω2

1,S + Ω2
0,S ≈ Ω0,S, we obtain for the

trigonometric part
arccos

(
cos2

(Ω0,Sτp
2

)
− sin2

(Ω0,Sτp
2

))
. (S.63)

Eq. (S.63) can be further simplified to

arccos
(

cos
(
π

Ω0,S
ωm

))
(S.64)

using τp = π
ωm

and cos2 (x) − sin2 (x) = cos (2x). Eq. (S.64) is again the same result as
obtained for the XiX DNP as well as the TOP DNP (see Eq. (S.53) and Eq. (S.61)).

Our analysis shows that in the weak irradiation regime, which is most likely the range
of operating at high magnetic fields (B0 ≫ 3.5 T), the resonance offsets Ω0,S of the three
DNP sequences (TOP, XiX and TPPM) occur at the same spectral position using the
same modulation period ωm and Rabi frequency ω1,S.

L. Numerical Calculation of Effective Fields and Fourier Coefficients of the
Hamiltonian

Numerical calculations of the effective field was performed using time-slicing over one
modulation period τm of the pulse scheme. The propagator of the whole pulse sequence
Û (τm) is split into J equally sized time steps of equal length ∆t

Û (τm) =
J∏

j=1
exp

(
−iĤj∆t

)
=

J∏
j=1

Ûj (S.65)
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with
Ĥj = ω1,S (j∆t) Ŝx + ω1,S (j∆t) Ŝy + Ω0,S (j∆t) Ŝz (S.66)

The evolution of a spin operator Ŝ(j)
χ at time step j under a given pulse scheme is then

calculated as

Ŝ(j)
χ = Û−1

1 · Û−1
2 ·... ·Û−1

j−1 · Û−1
j ŜχÛj · Ûj−1 ·... ·Û2 · Û1 , (S.67)

where χ = x, y, z. The rotation matrix at time step j is then defined as

Rj =

 a
(j)
xx a

(j)
xy a

(j)
xz

a
(j)
yx a

(j)
yy a

(j)
yz

a
(j)
zx a

(j)
zy a

(j)
zz

 , (S.68)

where an element a(j)
ξχ is calculated with the aid of Eq. (S.67) as

a
(j)
ξχ = 2 Tr

{
Ŝ

(j)
ξ Ŝχ

}
. (S.69)

In this section ξ and χ will always represent one of the three Cartesian directions
x, y or z if not stated otherwise. The factor 2 in Eq. (S.69) arises due to nor-
malization e.g. Tr

{
ŜxŜx

}
= Tr

{
ŜyŜy

}
= Tr

{
ŜzŜz

}
= 1

2 . Afterwards each vector

R⃗ξ =
(
a

(j)
ξx , a

(j)
ξy , a

(j)
ξz

)T
in Eq. (S.68) is rotated first along the effective field such that the

new +z-axis is along the direction of the effective field. The newly obtained vector R⃗χ,eff
is rotated around the new z-axis by −ωeff,Sj∆t to remove the explicit time-dependence
of the elements in the rotation matrix due to the effective field frequency ωeff,S. The
elements of vector in this newly frame are denoted as a(j)

ξχ, c because it is a cyclic frame
with respect to the modulation period and the only time dependence is now due to ωm.
The Fourier coefficients of the Hamiltonian are now calculated in a similar fashion as
given in Eq. (6) in the main text

a
j,(k)
ξχ, c = 1

J

∫ ∞

0
a

(j)
ξχ, c (t) e−ikωmtdt. (S.70)

In Matlab, the function fftshift(fft()) is used to calculate Eq. (S.70) numerically. The
vector ⃗

a
(j)
ξ, c =

(
a

(j)
ξx, c, a

(j)
ξy, c, a

(j)
ξz, c

)T
is then rotated by ωeff,Sj∆t around the direction of

the effective field to obtain the Fourier coefficients a(k,ℓ)
ξχ as given in Eq. (6) of the main

text. The rotation angle βeff,S around the effective field and the rotation axis r⃗rot =
(rx,rot, ry,rot, rz,rot) are obtained by using an extended version of Rodrigues’ formula
and using the rotation matrix in Eq. (S.68) for the last step e.g. j = J . First the
eigenvalue equation

RJ r⃗rot = 1r⃗rot (S.71)
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needs to be solved. This gives the eigenvector r⃗rot corresponding to eigenvalue 1. From
the vector entries of r⃗rot one can construct a matrix of the following form

N =

 0 −rz,rot ry,rot
rz,rot 0 −rx,rot

−ry,rot rx,rot 0

 (S.72)

The rotation angle βeff,S can then be determined by using the two equations

cos (βeff,S) = Tr{RJ} − 1
2 (S.73)

sin (βeff,S) = −Tr{NRJ}
2 (S.74)

together with the relation tan (βeff,S) = sin(βeff,S)
cos(βeff,S) . The use of the extended Rodrigues’

formula is necessary to determine the sign of the rotation angle and therefore the sign
of ωeff,S (see Eq. (5) in the main text). This way, zero- and double-quantum resonance
conditions can be distinguished. The polar angle θ and ψ to flip the coordinate sys-
tem along the direction of the effective field are determined from the vector r⃗rot in the
following way

θ = arccos (rz,rot) (S.75)

ψ = arctan
(
ry,rot
rx,rot

)
. (S.76)
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M. Comparison of Eigenvalues of ZQ Transitions in the XiX DNP Sequence
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Figure S14: Comparison between the eigenvalues of a specific diagonal block in the
infinite-dimensional Floquet Hamiltonian as given in Eq. (60) (red color
code) and Eq. (61) (blue color code) in the main text with the numerical
simulation using operator-based Floquet theory (dashed lines) for the XiX
DNP sequence at 0.35 T and a pulse length τp of 15 ns. Shown here are
resonance conditions for ZQ transitions. A resonance condition occurs at a
mw offset Ω0,S, where the eigenvalues are equal i.e. ϵ(c2)

α,β = ϵ
(c1)
β,α . The Fourier

components Ĥ(q′) with Fourier index q′ = c2 − c1 are indicated above the
dashed lines. In the weak irradiation regime (ω1,S ≪ ωm), each resonance
condition can be assigned to a Fourier index of the infinite Floquet Hamilto-
nian and therefore to a mode in the Fourier expansion of the mw irradiation.
The color code for the dashed lines indicates the strength of the resonance
condition (see main text above for more details). For the analytical calcula-
tions of the eigenvalues according to Eq. (60) and Eq. (61) in the main text
the following parameters were used: ωm

2π = 33.333 MHz, ω0,I
2π = −14.83 MHz,

Azz = B = 1 MHz. Please note that the hyperfine constants are expressed
as linear frequencies.
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N. Three-spin Effects
On closer inspection of the DNP profiles in Fig. 4 of the main text, one recognizes certain
small peaks that do not belong to any resonance condition found by solving Eq. (9) in
the main text. These small peaks can be explained by a three-spin system consisting
of one electron and two nuclei of the same kind as already mentioned in Ref. [4] and
Ref. [5]. Therefore, we need to extend Eq. (1) in the main text to a Hamiltonian that
contains an additional nuclear spin coupled to the electron

ˆ̃H (t) = Ω0,SŜz + ˆ̃H(S)
µw (t) +

2∑
l=1

(
A(l)

zz ŜzÎl,z +B(l)ŜzÎl,x + ω
(l)
0,IÎl,z

)
. (S.77)

In case of two protons, the Hilbert space now has a dimension 8 × 8 within the basis set
|κ, η, ξ⟩, where κ ∈ {αS, βS}, η ∈ {α1,I, β1,I} and ξ ∈ {α2,I, β2,I}. The basis set can be
written out as

|1⟩ = |αS, α1,I, α2,I⟩ (S.78)
|2⟩ = |αS, α1,I, β2,I⟩ (S.79)
|3⟩ = |αS, β1,I, α2,I⟩ (S.80)
|4⟩ = |αS, β1,I, β2,I⟩ (S.81)
|5⟩ = |βS, α1,I, α2,I⟩ (S.82)
|6⟩ = |βS, α1,I, β2,I⟩ (S.83)
|7⟩ = |βS, β1,I, α2,I⟩ (S.84)
|8⟩ = |βS, β1,I, β2,I⟩ (S.85)

We can now again diagonalize the Hamiltonian in Eq. (S.77) in a similar way as outlined
in section 2.3 of the main text. Here we discuss the XiX case and therefore only need
to perform the first frame transformation (see section 2.4 in the main text). This frame
transformation needs to be performed for each nuclear spin (spin 1 and spin 2) separately.
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The eight eigenvalues of Eq. (S.77) are thus given as

ϵ
(c1)
1 = c1ωm + 1

4

2∑
l=1

(
A(l)

zz + 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz + 2ω(l)

0,I

)2 + Ω0,S
2 (S.86)

ϵ
(c1)
2 = c1ωm + 1

4

2∑
l=1

(−1)l+1
(
A(l)

zz + 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz + 2ω(l)

0,I

)2 + Ω0,S
2 (S.87)

ϵ
(c1)
3 = c1ωm + 1

4

2∑
l=1

(−1)l
(
A(l)

zz + 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz + 2ω(l)

0,I

)2 + Ω0,S
2 (S.88)

ϵ
(c1)
4 = c1ωm − 1

4

2∑
l=1

(
A(l)

zz + 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz + 2ω(l)

0,I

)2 + Ω0,S
2 (S.89)

ϵ
(c1)
5 = c1ωm − 1

4

2∑
l=1

(
A(l)

zz − 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz − 2ω(l)

0,I

)2 − Ω0,S
2 (S.90)

ϵ
(c1)
6 = c1ωm + 1

4

2∑
l=1

(−1)l
(
A(l)

zz − 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz − 2ω(l)

0,I

)2 − Ω0,S
2 (S.91)

ϵ
(c1)
7 = c1ωm + 1

4

2∑
l=1

(−1)l+1
(
A(l)

zz − 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz − 2ω(l)

0,I

)2 − Ω0,S
2 . (S.92)

ϵ
(c1)
8 = c1ωm + 1

4

2∑
l=1

(
A(l)

zz − 2ω(l)
0,I

)√√√√√1 +
B2

(l)(
A

(l)
zz − 2ω(l)

0,I

)2 − Ω0,S
2 (S.93)

In Eqs. (S.86)-(S.93) the subscript index in e.g. ϵ(c1)
1 refers to the basis functions given

in Eqs. (S.78)-(S.85). Three-spin transitions are only possible between the following
states: |1⟩ ↔ |8⟩, |2⟩ ↔ |7⟩, |3⟩ ↔ |6⟩ and |4⟩ ↔ |5⟩. For the following discussion we
make the assumption: A(1)

zz = A
(2)
zz , B(1) = B(2) and ω

(1)
0,I = ω

(2)
0,I and invoke the weak

coupling regime. Therefore, we obtain for the mw offsets at resonance between Fourier
states |c1⟩ and |c2⟩ the expressions:

|1⟩ ↔ |8⟩ : Ω(res)
0,S = (c2 − c1)ωm − 2ω0,I (S.94)

|2⟩ ↔ |7⟩ : Ω(res)
0,S = (c2 − c1)ωm (S.95)

|3⟩ ↔ |6⟩ : Ω(res)
0,S = (c2 − c1)ωm (S.96)

|4⟩ ↔ |5⟩ : Ω(res)
0,S = (c2 − c1)ωm + 2ω0,I. (S.97)
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The transition amplitudes are calculated in in similar fashion as for the two-spin case
and are given as

I(q′) =
{
ω(max)

1,S
i
4b|q′| sin (η1) sin (η2) , for odd q′

0, for even q′ (S.98)

The angles η1 and η2 can be calculated using Eqs. (37)-(38) of the main text and
η = 1

2 (ηα + ηβ) for nuclear spin 1 and 2, respectively. Please not that the sign of Eq.
(S.98) changes for the transitions |2⟩ ↔ |7⟩ and |3⟩ ↔ |6⟩. As already explained for the
two-spin case, the Fourier states |c1⟩ and |c2⟩ are connected by the off-diagonal block
Ĥ(q′) with q′ = (c2 − c1) and this block is only an non-zero matrix if q′ = c2 − c1 is odd
(see Eq. (S.98)). However, the three-spin effect is "doubly-forbidden" in the sense that
it contains two times the sin (η) term, namely for spin 1 and 2. This term simplifies
in the weak coupling regime and by assuming the same coupling between the electron
and the two nuclei to

(
B

2ω0,I

)2
. This is the reason for the reduced intensity observed

experimentally compared to the two-spin case (see Fig. S15). In Tab. S1 the expected
mw offsets as predicted by Eqs. (S.94)-(S.97) are listed for different values of q′ = c2 −c1
for a normal XiX sequence with τp = 15 ns and ω1,S

2π = 4 MHz measured at B0 = 0.35 T.
First off all we notice that none of the estimated mw offsets for the transitions |2⟩ ↔ |7⟩
and |3⟩ ↔ |6⟩ are visible (compare to Eqs. (S.95)-(S.96)). The reason for this lies in
the assumption that we made by using the same coupling between the electron and the
two nuclei. In the transitions |2⟩ ↔ |7⟩ and |3⟩ ↔ |6⟩ the two nuclei flip the opposite
way i.e. |α1,I, β2,I⟩ ↔ |β1,I, α2,I⟩ or |β1,I, α2,I⟩ ↔ |α1,I, β2,I⟩. This leads to gain of zero
in polarization in the nuclear spin bath. In the transitions |1⟩ ↔ |8⟩ and |4⟩ ↔ |5⟩
both spins flip the same way i.e. |α1,I, α2,I⟩ ↔ |β1,I, β2,I⟩, resulting in a gain for the
polarization in the nuclear spin bath. Surprisingly, there are more three-spin effects
visible with positive enhancement than with negative one as can be seen from Fig. S15.
However, there are also some resonance offsets that should not be visible at all e.g.
Ω0,S
2π = −103.673 MHz resulting from q′ = c2 − c1 = −4 or all red entries with an even
q′ = c2 − c1 in Tab. S1. As outlined above and manifested by Eq. (S.98) the transition
amplitude of two Fourier states connected by an even q′ = c2 − c1 are 0. The occurrence
of those can in principle be also higher spin effects e.g. four-spin effects that by accident
coincide with the three-spin solid effect discussed here.
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q′ =
c2 − c1

(c2 − c1) νm − 2ν0,I
[MHz]

(c2 − c1) νm [MHz] (c2 − c1) νm + 2ν0,I
[MHz]

-9 -270.340 -300.000 -329.660

-8 -237.007 -266.667 -296.327

-7 -203.673 -233.333 -262.993

-6 -170.340 -200.000 -229.660

-5 -137.007 -166.667 -196.327

-4 -103.673 -133.333 -162.993

-3 -70.340 -100.000 -129.660

-2 -37.007 -66.667 -96.327

-1 -3.673 -33.333 -62.993

0 29.660 0.000 -29.660

1 62.993 33.333 3.673

2 96.327 66.667 37.007

3 129.660 100.000 70.340

4 162.993 133.333 103.673

5 196.327 166.667 137.007

6 229.660 200.000 170.340

7 262.993 233.333 203.673

8 296.327 266.667 237.007

9 329.660 300.000 270.340

Table S1: Expected resonance offsets according to Eqs. (S.94)-(S.97) for three-spin tran-
sitions in the normal XiX DNP scheme with τp = 15 ns and ω1,S

2π = 4 MHz
calculated for different q = c2 − c1. The external magnetic field was set to
0.35 T corresponding to ν0,I = −14.83 MHz. The red colored entries are
those resonances which were observed experimentally in the DNP profile (see
Fig. S15). Please note that this DNP profile was recorded over a range of
{ Ω0,S

2π·MHz ∈ Z | − 280 ≤ Ω0,S
2π·MHz ≤ 280}, which is the reason for the absence off

all values listed here that exceed this range.
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Figure S15: Experimental manifestation of the three-spin effect in the DNP profile using
a XiX scheme with τp = 15 ns and ω1,S

2π = 4 MHz measured at 0.35 T.
The black asterisks represent the observed three-spin transitions according
to Eqs. (S.94)-(S.97). Please note that this data is already shown in Fig. 4
of the main text.
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O. Additional Plots for the field dependence
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Figure S16: Calculated values for aeff , Ω0,S and k0 at resonance for different magnetic
fields (0.1, 0.35, 1.3, 3.5, 7, 14, 28) T for ZQ peaks with q = c2 − c1 = 1.
The red circles represent a XiX DNP sequence with a fixed Rabi frequency
ω1,S
2π = 4 MHz and pulse length τp = 15 ns. XiX DNP sequences with τp = 5

ns and Rabi frequencies that increase linearly with the external B0-field e.g.
(0.1 MHz, 0.1 T), (0.35 MHz, 0.35 T), (1.3 MHz, 1.3 T), (3.5 MHz, 3.5 T),
(7 MHz, 7 T), (14 MHz, 14 T) and (28 MHz, 28 T) for the Rabi frequency
and the external magnetic field, respectively, are shown in blue diamonds.
The linear behaviour of Ω0,S with respect to the external magnetic field can
be explained by the approximation in Eq. (67) in the main text. Due to
Eq. (9) of the main text also k0 shows a similar linear behaviour. For the
red circles, a fraction of aeff for two different magnetic fields scale with the
inverse fraction of the corresponding magnetic fields, respectively (see text
for more details). In contrast, aeff is constant over the different magnetic
fields for a Rabi frequency that scales linearly with the magnetic field (blue
diamonds). This is indicated by the dashed blue line. Please note the
logarithmic scale in the y axis in the plot for aeff .
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Figure S17: Calculated values for ωeff,S and ⟨ρ0|Ŝz⟩ at resonance for different magnetic
fields (0.1, 0.35, 1.3, 3.5, 7, 14, 28) T for DQ peaks with q = c2 − c1 = 1.
The red circles represent a XiX DNP sequence with a fixed Rabi frequency
ω1,S
2π = 4 MHz and pulse length τp = 15 ns. XiX DNP sequences with τp = 5

ns and Rabi frequencies that increase linearly with the external B0-field e.g.
(0.1 MHz, 0.1 T), (0.35 MHz, 0.35 T), (1.3 MHz, 1.3 T), (3.5 MHz, 3.5 T),
(7 MHz, 7 T), (14 MHz, 14 T) and (28 MHz, 28 T) for the Rabi frequency
and the external magnetic field, respectively, are shown in blue diamonds.
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Figure S18: Calculated values for ωeff,S and ⟨ρ0|Ŝz⟩ at resonance for different magnetic
fields (0.1, 0.35, 1.3, 3.5, 7, 14, 28) T for ZQ peaks with q = c2 − c1 = 1.
The red circles represent a XiX DNP sequence with a fixed Rabi frequency
ω1,S
2π = 4 MHz and pulse length τp = 15 ns. XiX DNP sequences with τp = 5

ns and Rabi frequencies that increase linearly with the external B0-field e.g.
(0.1 MHz, 0.1 T), (0.35 MHz, 0.35 T), (1.3 MHz, 1.3 T), (3.5 MHz, 3.5 T),
(7 MHz, 7 T), (14 MHz, 14 T) and (28 MHz, 28 T) for the Rabi frequency
and the external magnetic field, respectively, are shown in blue diamonds.
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P. DNP Gaussian Fit to Experimental Data
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Figure S19: Gaussian fit of DNP profile of Fig. 4 in the main text. Each peak was fitted
to a Gaussian line shape.
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Ω0,S
2π [MHz] FWHM [MHz]

-248.128 5.631

-218.471 4.959

-181.446 5.650

-151.793 5.339

-114.745 5.793

-85.104 5.370

-47.909 6.354

-18.663 5.756

18.663 5.880

47.909 5.985

85.104 5.531

114.745 5.535

151.793 5.601

181.446 5.092

218.471 5.548

248.128 5.392

Table S2: FWHM for each peak present in the DNP profile of Fig. S19. Each peak in
the DNP profile was fitted to a Gaussian line shape. The microwave offsets
reported in this table represent the values obtained from numerical simulations
using operator-based Floquet theory as outlined in section 2.1 in the main text.

Q. Numerical Calculation of the DNP Field Profile
The numerical simulation of the DNP profile as shown in Fig. 9 in section 3.2.4 in
the main text was performed with the package GAMMA [6] at a temperature of 80
K and B0-fields of 0.35 and 3.5 T. A two-spin electron-proton system was used with
an electron-proton distance ren = 4.5 Å. An axial g-tensor with a slight g-anisotropy
of gxx = gyy = 2.00319 and gzz = 2.00258 was used corresponding to giso = 2.00299
[7]. For the relativ orientation of HFI tensor the following Euler angles were used
(α, β, γ) = (275◦, 47◦, 0◦). Relaxation was modelled in Liouville space using the random-
field approach. The relaxation superoperator in this case for a spin (S) is given as

ˆ̂
R = kz

[
Ŝz,

[
Ŝz, •

]]
+ kxy

([
Ŝx,

[
Ŝx, •

]]
+
[
Ŝy,

[
Ŝy, •

]])
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with T1,S = 1
2kxy

and T2,S = 1
kxy+kz

. T1,e = 2.468 ms, T2,e = 3.437 µs, T1,n = 32 s
and T2,n = 1 ms were used for the electron spin and the proton spin, respectively. The
rate constants kz and kxy describe randomly fluctuating fields along the given directions.
Powder averaging was performed according to the ZCW scheme [8] with a total of 1000
crystallite orientations.
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