Supporting Information

Spectroscopic Investigation of Size-Dependent CO₂ Binding on Cationic Copper Clusters: Analysis of CO₂ Asymmetric Stretch

A.M. Reider¹, M. Szalay^{2,3}, J. Reichegger¹, J. Barabas^{2,4}, M. Schmidt¹, M. Kappe¹, T. Höltzl^{2,3*}, P. Scheier¹, O.V. Lushchikova1*

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria.

HUN-REN-BME Computation Driven Chemistry Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of

Technology and Economics, Muegyetem rkp. 3, Budapest 1111, Hungary Furukawa Electric Institute of Technology, Késmárk Utca 28/A, Budapest 1158, Hungary

5

Figure S1: The power curve of the laser employed, with the shaded gray area denoting the frequency range where the CO₂ stretch vibration was detected.

Figure S2: Benchmarking of different methods for harmonic frequency calculations on the asymmetrical stretching vibrational mode of the CO_2 in the $Cu_4[CO_2]^+$ adduct, with carbon mass corresponding to the natural abundance. Ecp*XXX the application of an effective core potential.

Method	TPSSh/LANL2DZ	TPSSh/def2-TZVP	TPSSh-D3/def2-TZVP	TPSSh/cc-pVTZ
Harmonic	2267	2400	2400	2406
TOSH	2218	2352	2351	2357
VCI[1]	2272	2408	2407	2413
VCI[2]	2226	2359	2359	2365
VCI[3]	2229	2362	2361	2367
VCI[4]	2220	2353	2352	2358
VCI[5]	2218	2352	2351	2357
VCI[6]	2218	2352	2351	2357

Table S1: Benchmarking of different methods for anharmonic calculations of the asymmetrical stretching vibrational mode of gas phase CO_2 molecule, with carbon mass set corresponding to natural abundance. The experimental value¹ is 2349 cm⁻¹.

Method	Cu[CO ₂]+	Cu ₂ [CO ₂] ⁺	Cu₃[CO₂]⁺	Cu₄[CO₂]⁺
Experimental	2316	2323	2318	2312
Harmonic	2429	2435	2431	2419
TOSH	2381	2385	2384	
VCI[1]	2434	2437	2437	
VCI[2]	2389	2392	2392	
VCI[3]	2391	2395	2394	
VCI[4]	2382	2386	2385	
VCI[5]	2381	2385	2384	
VCI[6]	2381	2385	2384	
Anharmonic scaling f	factor (<i>n</i> =1):	0.98		
Anharmonic scaling f	factor (<i>n</i> =2):	0.98		
Anharmonic scaling factor (<i>n</i> =3):		0.98		

TPSSh-D3/def2-TZVP

TPSSh/LANL2DZ

Method	Cu[CO₂]⁺	Cu ₂ [CO ₂] ⁺	Cu ₃ [CO ₂]+	Cu₄[CO ₂]⁺
Experimental	2316	2323	2318	2312
Harmonic	2325	2311	2307	2300
TOSH	2277	2262	2257	
VCI[1]	2326	2314	2309	
VCI[2]	2284	2270	2265	
VCI[3]	2287	2272	2268	
VCI[4]	2278	2263	2259	
VCI[5]	2277	2262	2258	
VCI[6]	2277	2262	2257	
Anharmonic scaling	factor (n=1):	0.98		
Anharmonic scaling factor (n=2):		0.98		
Anharmonic scaling factor (<i>n</i> =3):		0.98		

Table S2: Benchmarking of TPSSh-D3/def2-TZVP and TPSSh/LANL2DZ methods for anharmonic calculations of the asymmetrical stretching vibrational mode of $Cu_n[CO_2]^+$ complexes with n = 1-4, with carbon mass corresponding to natural abundance.

Figure S3: Mass spectrum where the experimental setup was optimised to create larger Cu_n clusters. The red and blue vertical lines highlight the positions of the $Cu_n[CO_2]^+$ and $Cu_n[CO_2][H_2O]^+$, respectively, for n = 1 - 10. In the inset the He attachment on the $Cu_6[CO_2]^+$ and $Cu_6[CO_2][H_2O]^+$ cluster is shown with red and blue asterisks accordingly.

Figure S4: Correlation between binding energies and position of the asymmetric stretching vibrational mode of the bound CO_2 for all calculated $Cu_n[CO_2]^+$, $Cu_n[CO_2][H_2O]^+$ and $Cu_n[CO_2][H][OH]^+$ structures. The linear fit is shown with a dashed line and R^2 is calculated for each system. With carbon mass corresponding to natural abundance.

Figure S5: a. Charges of the C atom in the CO_2 as a function of different cluster-complex sizes. b. Charges of the O atom (which is NOT connected to the cluster) in the CO_2 as a function of different cluster-complex sizes.

Figure S6: Wiberg bond indices of a. the C-O bond (where oxygen is connected to the cluster, i.e. inner oxygen); b. the C-O bond (where oxygen is not connected to the cluster, i.e. outer oxygen); c. both C-O bonds (inner and outer) with respect to the CO₂ asymmetric stretch vibrational frequency.

1. T. Shimanouchi, *Tables of molecular vibrational frequencies*, National Bureau of Standards Washington, DC, 1972.