Supplementary information for: Analysis of Bonding Motifs in Unusual Molecules I: Planar Hexacoordinated Carbon Atoms

Daniel Del Angel Cruz¹, Katherine N. Ferreras¹, Taylor Harville¹, George Schoendorff² and Mark S. Gordon^{1*}

¹Department of Chemistry and Ames National Laboratory, Iowa State University, Ames, Iowa, 50011, United States

²Department of Chemistry, University of South Dakota, Vermillion, South Dakota, 57069, United States

S1 Geometries

Qualitatively, the RHF/6-31G(d), MP2/ACCD and CCSD(T)/ACCT geometries are similar. The computed CH₃Li geometry is in good agreement with the one previously reported by Kauffman and collaborators,¹ at the MP2/6-31G(d) level of theory. For CO₃Li₃⁺, the parameters reported by Wu and collaborators² at the CCSD(T)/ACCT level of theory are in good agreement with the present results. For CS₃Li₃⁺, the PBE0-D3/def2-TZVP optimized geometry reported by Leyva-Parra and collaborators³ predicts C-Li and Li-S bond distances that are too short relative to those predicted by the wave function methods.

A shortening of the C-Li distances is observed in the CCSD(T)/ACCT structures of CH₃Li and CS₃Li₃⁺, relative to their RHF/6-31G(d) counterparts. Generally, the treatment of electron correlation leads to longer interatomic equilibrium distances, as a result of the introduction of antibonding character into the wave function. However, a shortening may indicate that the CCSD(T) level of theory provides a better description of an attractive interaction that plays a significant role in the bonding of a molecule (e.g., ionic attraction), as it is the case in CH₃Li, in which the C-Li bond is known to have a strong ionic character.⁴ The observation of this shortening in CS₃Li₃⁺ but not in CO₃Li₃⁺

would indicate the existence of ionic attraction in the former, but not in the latter, in accordance with previous reports.³

Parameter	RHF/ 6-31G(d)	MP2/ACCD	CCSD(T)/ACCT	Literature
	(CH ₃ Li		MP2/6-31G(d) ¹
r(C-Li)	2.001	2.016	1.986	2.003
r(C-H)	1.093	1.109	1.100	1.099
∠ H-C-Li	112.60	112.62	112.79	112.0
∠ Н-С-Н	106.17	106.15	105.96	-
	С	O ₃ Li ₃ +		CCSD(T)/ACCT ²
r(C-O)	1.269	1.304	1.292	1.296
r(C-Li)	2.204	2.237	2.212	2.212
r(Li-O)	1.916	1.946	1.925	1.925
	C	S2L j2 ⁺		PBEO-D3/def2-
	TZVP ³			
r(C-S)	1.720	1.728	1.727	1.710
r(C-Li)	2.770	2.770	2.722	2.670
r(Li-S)	2.422	2.424	2.386	2.340

Table S1 Computed CH₃Li (C_{3v}) CO₃Li₃⁺ (D_{3h}) and CS₃Li₃⁺ (D_{3h}) geometrical parameters.

S2 RHF/6-31G(d) QUAO results on the CCSD(T)/aug-cc-pVTZ geometries

RHF/6-31G(d) QUAOs were obtained at the CCSD(T)/aug-cc-pVTZ geometries of all three molecules in the study. For conciseness, the aug-cc-pVTZ basis set is abbreviated as ACCT. Qualitatively, all RHF/6-31G(d)//CCSD(T)/ACCT QUAOs match those presented in Figures 3 to 5 in the main body of this work. Thus, only the quantitative results are presented here. Bond orders (BOs) and kinetic bond orders (KBOs) are presented in Table S2, S5 and S7, for CH₃Li, CO₃Li₃⁺ and CS₃Li₃⁺, respectively. Orbital occupations and s and p characters are presented in Tables S3, S6 and S8 for CH₃Li, CO₃Li₃⁺ and CS₃Li₃⁺, respectively. Atomic charges computed from QUAO populations for all three molecules are presented in Table S4.

Table S2 RHF/6-31G(d)//CCSD(T)/ACCT bonding interactions and characteristics in CH₃Li. Only interactions with BO > 0.15 and KBO < -1 kcal/mol are listed.

Bond	Orbital I	Orbital J	BO	KBO (kcal/mol)
СНσ	Cho	Нсσ	0.97	-36.5
CLio	Clio	Lico	0.75	-10.6

Table S3 RHF/6-31G(d)//CCSD(T)/ACCT orbital occupations and s- and p- character fractions in CH_3Li .

Orbital	Occupation	Fraction s	Fraction p
Cho	1.08	0.19	0.81
Нсσ	0.89	1	0
Clio	1.64	0.27	0.73
Lico	0.36	0.81	0.19
Linv	0.02	0.09	0.91

populations 1	n CH ₃ L1, CO	$_{3L13}$ and CS_{3}	L13'.			
Molecule		CH3Li			CO3Li3+	
Atom	С	Н	Li	С	0	Li
Charge	-0.89	+0.11	+0.57	+0.88	-0.68	+0.71
Molecule		CS3Li3+				
Atom	С	S	Li			
Charge	-0.12	-0.12	+0.49			

Table S4 RHF/6-31G(d)//CCSD(T)/ACCT atomic partial charges computed from QUAO populations in CH_3Li , $CO_3Li_3^+$ and $CS_3Li_3^+$.

Table S5 RHF/6-31G(d)//CCSD(T)/ACCT bonding structures and characteristics in $CO_3Li_3^+$. Only interactions with BO larger than 0.15 and KBO lower than -1 kcal/mol are listed. The Li-C interactions are listed despite being below the set threshold.

Bond	Orbital I	Orbital J	BO	KBO
СОσ	Соσ	Οcσ	0.93	-66.2
СОπ	Coπ	Οcπ	0.54	-13.9
ΟΟπ	Οcπ	Οcπ	0.23	-2.9
Opl-Coσ	Opl	Coσ	0.19	-2.9
O <i>pl</i> -Lioσ	Opl	Lioo	0.43	-12.5
Οcπ-Lioπ	Οcπ	Lioπ	0.16	-1.5
Lioσ-Coσ	Lioo	Coσ	0.05	-0.6
Lioπ-Coπ	Lioo	Coπ	0.11	-0.3

Table S6 RHF/6-31G(d)//CCSD(T)/ACCT orbital occupations and s- and p- character fractions in $CO_3Li_3^+$.

Orbital	Occupation	Fraction s	Fraction p
Coσ	0.81	0.29	0.71
Coπ	0.68	0.00	1.00
Οcσ	1.23	0.26	0.74
Οcπ	1.74	0.00	1.00
Opl	1.85	0.34	0.66
Lioo	0.12	0.29	0.71
Lioπ	0.04	0.00	1.00
Linv	0.01	0.36	0.64

Table S7 RHF/6-31G(d)//CCSD(T)/ACCT bonding structures and characteristics in $CS_3Li_3^+$. Only interactions with BO larger than 0.15 and KBO lower than -1 kcal/mol are listed. The Li-C interactions are listed despite being below the set threshold.

	Bond	Orbital I	Orbital J	BO	KBO (kcal/mol)
	CSσ	Сѕσ	Scσ	0.96	-40.4
	$CS\pi$	Csπ	Scπ	0.54	-9.1
	Ssπ	Scπ	Scπ	0.25	-1.8
	Spl-Liso	Spl	Liso	0.59	-16.7
Sc	cπ-Lisπ	Scπ	Lisπ	0.21	-1.9
	Liso-Cso	Liso	Csσ	0.04	-0.2
Li	sπ-Csπ	Lisπ	Csπ	0.14	-0.2

The RHF/6-31G(d)//CCSD(T)/aug-cc-pVTZ results are essentially the same as the RHF/6-31G(d) ones. Thus, the RHF results are used in the main body of the paper.

S3 Empty orbitals on Li

The orbitals displayed in this section correspond to the RHF/6-31G(d) results reported in the main body of this work. The following orbitals do not participate in any bonding interaction, and thus have been excluded from the figures in the main text.

S3.1 CH₃Li

Figure S1 Empty orbital on Li in CH_3Li . The orbital population is shown below the orbital label.

Figure S2 Empty orbital on Li in $CO_3Li_3^+$. The orbital population is shown below the orbital label.

$S3.3 CS_3Li_3^+$

Figure S3 Empty orbital on Li in $CS_3Li_3^+$. The orbital population is shown below the orbital label.

S4 Comparison of the QUAOs of CH3Li obtained from RHF/6-31G(d) and full-valence (8,11)-CASSCF/6-311++G(d,p)//RHF/6-311++G(d,p) wave functions

The CASSCF calculation was ran using the RHF occupied molecular orbitals (MOs) + valence virtual orbitals (VVOs) as starting point. The active space was chosen to be the full valence space; 8 valence electrons in 11 valence orbitals (considering the three 2p orbitals on Li).

The QUAOs are shown in Figures 1, 2, and 3. Bond orders (BOs) are shown in bold above the plotted orbitals. Kinetic bond orders (KBOs) (in kcal/mol) are shown to the right of the respective BO. Bonding interactions, sand p- characters and partial charges are summarized in Tables 1 to 3. It is evident that the results do not change significantly with respect to the RHF results when a CASSCF wave function is employed.

Figure 1 RHF vs CASSCF CH σ interaction in CH3Li. Bond orders are shown in bold above the displayed orbitals. Kinetic bond orders (in kcal/mol) are shown to the right of the corresponding bond order. The labels of the orbitals involved in the interactions are shown to the sides of the displayed orbitals, and orbital populations are shown below the corresponding orbital label.

Figure 2 RHF vs CASSCF CLio interaction in CH3Li. Bond orders are shown in bold above the displayed orbitals. Kinetic bond orders (in kcal/mol) are shown to the right of the corresponding bond order. The labels of the orbitals involved in the interactions are shown to the sides of the displayed orbitals, and orbital populations are shown below the corresponding orbital label.

Figure 3 RHF vs CASSCF Li empty orbital in CH3Li. The labels of the orbitals are shown above the displayed orbitals, and orbital populations are shown below the corresponding orbital label.

Table 1 comparison of the bonding interactions and characteristics in CH ₃ Li.	Only
interactions with $BO > 0.15$ and $KBO < -1$ kcal/mol are listed.	

Bond Orbital I	Orbital I	Orbital I	RHF/6-	-31G(d)	(8,11)-CASSCF/6- 311++G(d,p)	
	Oronar J	BO	KBO	BO	KBO	
СНо	Cho	Нсσ	0.98	-37.1	0.95	-44.6
CLio	Clio	Lico	0.76	-10.6	0.81	-14.0

Table 2 Comparison of the orbital occupations and s- and p- character fractions in CH₃Li.

Orbital	RHF/6-31G(d)			(8,11)-CASSCF/6-311++G(d,p)			
	Occupation	Fraction s	Fraction p	Occupation	Fraction s	Fraction p	
Cho	1.08	0.19	0.81	1.12	0.19	0.81	
Нсσ	0.89	1	0	0.85	1.00	0.00	
Clio	1.64	0.26	0.74	1.51	0.25	0.75	
Lico	0.37	0.81	0.19	0.49	0.86	0.14	
Linv	0.02	0.09	0.91	0.03	0.07	0.93	

Table 3 Comparison of the atomic partial charges computed from QUAO populations in CH_3Li .

RHF/6-31G(d)			(8,11)-CA	ASSCF/6-311	++G(d,p)	
Atom	С	Н	Li	С	Н	Li
Charge	-0.89	+0.11	+0.56	-0.88	+0.15	+0.43

References

- 1E. Kaufmann, K. Raghavachari, A. E. Reed and P. V. R. Schleyer, Methyllithium and its oligomers. Structural and energetic relationships, *Organometallics*, 1988, 7, 1597–1607.
- 2Y.-B. Wu, Y. Duan, G. Lu, H.-G. Lu, P. Yang, P. von R. Schleyer, G. Merino, R. Islas and Z.-X. Wang, D3h CN3Be3+ and CO3Li3+: viable planar hexacoordinate carbon prototypes, *Phys. Chem. Chem. Phys.*, 2012, **14**, 14760.
- 3L. Leyva-Parra, L. Diego, O. Yañez, D. Inostroza, J. Barroso, A. Vásquez-Espinal, G. Merino and W. Tiznado, Planar Hexacoordinate Carbons: Half Covalent, Half Ionic, *Angew. Chem. Int. Ed.*, 2021, **60**, 8700–8704.
- 4F. M. Bickelhaupt, M. Solà and C. Fonseca Guerra, Covalency in Highly Polar Bonds. Structure and Bonding of Methylalkalimetal Oligomers (CH $_3$ M) $_n$ (M = Li–Rb; n = 1, 4), J. Chem. Theory Comput., 2006, **2**, 965–980.