Electronic Supplementary Information

## Why alloying with noble metals does not decrease the oxidation of platinum – a DFT-based ab-initio thermodynamics study

Alexander Kafka and Franziska Hess\*

Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany

## Table of contents:

| Tab. S1  | Structure and thermodynamic properties of all investigated phases compared to literature values.                                                                                             | 2  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Tab. S2  | Fit parameters obtained for the vibrational heat capacity, -enthalpy and -entropy of all crystalline phases.                                                                                 | 4  |
| Tab. S3  | Comparison of several dispersion correction methods available in VASP for the Pt(II)-oxides.                                                                                                 | 5  |
| Fig. S1  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and silver oxidation, as well as Gibbs free energies of electrochemical platinum- and silver oxidation of Pt–Ag.    | 6  |
| Fig. S2  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and gold oxidation, as well as Gibbs free energies of electrochemical platinum- and gold oxidation of Pt–Au.        | 7  |
| Fig. S3  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and cobalt oxidation, as well as Gibbs free energies of electrochemical platinum- and cobalt oxidation of Pt–Co.    | 8  |
| Fig. S4  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and copper oxidation, as well as Gibbs free energies of electrochemical platinum- and copper oxidation of Pt–Cu.    | 9  |
| Fig. S5  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and iridium oxidation, as well as Gibbs free energies of electrochemical platinum- and iridium oxidation of Pt–Ir.  | 10 |
| Fig. S6  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and nickel oxidation, as well as Gibbs free energies of electrochemical platinum- and nickel oxidation of Pt–Ni.    | 11 |
| Fig. S7  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and rhenium oxidation, as well as Gibbs free energies of electrochemical platinum- and rhenium oxidation of Pt–Re.  | 12 |
| Fig. S8  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and rhodium oxidation, as well as Gibbs free energies of electrochemical platinum- and rhodium oxidation of Pt–Rh.  | 13 |
| Fig. S9  | Energy and Gibbs free energy of mixing, Gibbs free energies of platinum- and tungsten oxidation, as well as Gibbs free energies of electrochemical platinum- and tungsten oxidation of Pt–W. | 14 |
| Fig. S10 | Comparison of mean- and individual empirical enthalpy correction of the Gibbs free energies of copper- and rhodium oxidation from within Pt–Cu and Pt–Rh.                                    | 15 |

| Phase                          | Structure            | $\Delta E_f$ | $\Delta H_f^0$ | $\Delta H_f^0(Lit.)$                                                     | $S^0$           | $S^{0}(Lit.)$                                  |  |  |
|--------------------------------|----------------------|--------------|----------------|--------------------------------------------------------------------------|-----------------|------------------------------------------------|--|--|
| 0.                             | D .                  |              |                | [KJ/1101]                                                                | [ J/(mol·k)]    | 205 15 <sup>1</sup>                            |  |  |
| U2<br>Ha                       | $D_{\infty h}$       | 0.00         | 0.00           |                                                                          | 130.37          |                                                |  |  |
| H <sub>2</sub> O               | $D_{\infty h}$       | 0.00         | 0.00           | <br>-121 02 <sup>1</sup>                                                 | 130.37          | 130.08<br>0/ /2 1                              |  |  |
| Δα                             | $E_{2v}$             | -121.72      | -111.17        | -121.52                                                                  | -121.92 - 94.47 |                                                |  |  |
| Ag<br>Ac O                     |                      | 0.00         | 0.00           | 44.1/                                                                    |                 | 42.40                                          |  |  |
| Ag <sub>2</sub> U              | F 11.5111            | -5.91        | -43.39         | -15.54 -                                                                 | 62.51           | 47.25 4.47.20.5                                |  |  |
| Au<br>Au O                     | rm3m<br>Edd2         | 0.00         | 0.00           |                                                                          | 51.20           | 47.35 , 47.29 3                                |  |  |
|                                | P( /mm a             | -19.80       | -55.16         |                                                                          | 56.86           |                                                |  |  |
| α-ιο                           | $P \sigma_3 / mmc$   | 0.00         | 0.00           |                                                                          | 27.47           | 30.04 °, 30.03 '                               |  |  |
| β-C0                           | Fm3m                 | 1.44         | 1.33           |                                                                          | 29.43           |                                                |  |  |
| 00                             | $PZ/m^{a.}$          | -126.51      | -164.99        | -236.86°, -237.39′                                                       | 48.68           | 54.31 °, 53.33 ′                               |  |  |
| $CO_3O_4$                      | $14_1/ama^{a.j}$     | -233.78      | -268.87        | -305.13 °                                                                | 35.72           | 36.47 °                                        |  |  |
| Pt <sub>3</sub> Co             | Pm3m                 | -5.09        | -5.12          |                                                                          | 51.06           |                                                |  |  |
| PtCo                           | P4/mmm               | -7.44        | -7.50          |                                                                          | 71.24           |                                                |  |  |
| Cu                             | Fm3m                 | 0.00         | 0.00           |                                                                          | 33.81           | 33.13 <sup>9</sup> , 33.18 <sup>7</sup>        |  |  |
| Cu <sub>2</sub> O              | Pn3m                 | -46.42       | -83.45         | -85.13 10, -85.12 7                                                      | 49.53           | 46.34 <sup>10</sup> , 46.18 <sup>7</sup>       |  |  |
| CuO                            | C2/c                 | -108.38      | -145.32        | -155.19 <sup>10</sup>                                                    | 45.42           | 43.06 <sup>10</sup>                            |  |  |
| Pt₃Cu                          | Cmmm                 | -10.83       | -10.83         |                                                                          | 52.46           |                                                |  |  |
| PtCu                           | R3m                  | -14.41       | -14.41         |                                                                          | 75.09           |                                                |  |  |
| lr                             | $Fm\overline{3}m$    | 0.00         | 0.00           |                                                                          | 36.43           | 35.49 <sup>11</sup>                            |  |  |
| IrO <sub>2</sub>               | $P4_2/mnm$           | -230.45      | -263.05        | -249.50 <sup>12</sup> , -249.37 <sup>13</sup>                            | 49.07           | 51.01 <sup>13</sup>                            |  |  |
| IrO <sub>2</sub>               | $C_{2\nu}$           | 192.16       | 190.66         | 188.20 <sup>14</sup>                                                     | 286.07          | 274.11 <sup>14</sup>                           |  |  |
| IrO <sub>3</sub>               | $C_{2\nu}$           | -9.88        | -10.14         | ~ 22.00 <sup>15 b.)</sup> 330.23                                         |                 | 303.20 <sup>15 b.)</sup>                       |  |  |
| Ni                             | $Fm\overline{3}m$    | 0.00         | 0.00           | 27.72                                                                    |                 | 29.86 <sup>16</sup> , 29.87 <sup>7</sup>       |  |  |
| NiO                            | $P2/m^{a.}$          | -125.43      | -163.34        | -239.84 <sup>17</sup>                                                    | 44.20           | 37.99 <sup>7</sup>                             |  |  |
| Pt₃Ni                          | $Pm\overline{3}m$    | -5.90        | -5.93          |                                                                          | 51.46           |                                                |  |  |
| PtNi                           | P4/mmm               | -8.68        | -8.73          |                                                                          | 71.23           |                                                |  |  |
| Pt                             | $Fm\overline{3}m$    | 0.00         | 0.00           |                                                                          | 42.07           | 41.53 <sup>18</sup>                            |  |  |
| PtO                            | $P4_2/mmc$           | -42.80       | -78.49         | -88.50 <sup>19</sup>                                                     | 45.87           |                                                |  |  |
| $Pt_3O_4$                      | $Pm\overline{3}n$    | -98.03       | -133.09        | -121.11 <sup>19</sup>                                                    | 54.55           |                                                |  |  |
| PtO <sub>2</sub>               | $P\overline{3}m1$    | -134.26      | -167.61        |                                                                          | 51.33           |                                                |  |  |
| PtO <sub>2</sub>               | Pnnm                 | -147.67      | -180.89        | -191.00 <sup>19</sup>                                                    | 50.43           |                                                |  |  |
| PtO <sub>2</sub>               | $C_{2v}$             | 160.69       | 160.57         | 218.00 <sup>20</sup> , ~164.00 <sup>21-23</sup>                          | 259.89          | ~ 250.00 21-23                                 |  |  |
| Re                             | P6 <sub>3</sub> /mmc | 0.00         | 0.00           |                                                                          | 38.27           | 36.48 <sup>24</sup>                            |  |  |
| ReO <sub>2</sub>               | P2 <sub>1</sub> /c   | -399.67      | -433.09        |                                                                          | 50.52           |                                                |  |  |
| ReO <sub>2</sub>               | Pbcn                 | -423.79      | -456.67        | -445.15 <sup>25</sup> , -444.30 <sup>26</sup> ,<br>-448.94 <sup>27</sup> | 47.75           | 47.83 <sup>25</sup> , 47.82 <sup>27</sup>      |  |  |
| ReO₃                           | $Pm\overline{3}m$    | -608.26      | -640.03        | -601.90 <sup>28</sup> , -589.11 <sup>27</sup> 67.97                      |                 | 69.25 <sup>27</sup>                            |  |  |
| Re <sub>2</sub> O <sub>7</sub> | P212121              | -637.68      | -667.39        | -631.58 <sup>27</sup> 104.20 10                                          |                 | 103.64 <sup>27</sup>                           |  |  |
| $Re_2O_7$                      | $C_{2v}$             | -572.58      | -567.95        | -566.30 <sup>28</sup>                                                    | 235.01          | 219.35 <sup>28</sup>                           |  |  |
| Rh                             | $Fm\overline{3}m$    | 0.00         | 0.00           |                                                                          | 32.01           | 31.56 <sup>11</sup>                            |  |  |
| $Rh_2O_3$                      | Pbca                 | -173.12      | -207.77        | -202.77 <sup>29</sup> , -202.98 <sup>30</sup>                            | 39.63           | 37.85 <sup>29</sup> , 35.75 <sup>30</sup>      |  |  |
| Rh <sub>2</sub> O <sub>3</sub> | R∃c                  | -170.66      | -205.34        |                                                                          | 39.67           |                                                |  |  |
| RhO <sub>2</sub>               | P4 <sub>2</sub> /mnm | -243.29      | -276.41        | -244.94 <sup>31</sup>                                                    | 46.05           | 45.11 <sup>31</sup>                            |  |  |
| RhO <sub>2</sub>               | C <sub>2</sub> ,,    | 174.61       | 173.23         | 188.87 <sup>21,22</sup> , 200.13 <sup>23</sup>                           | 255.32          | 257.30 <sup>21,22</sup> , 264.40 <sup>23</sup> |  |  |

**Tab. S1:** Structure, energy of formation ( $\Delta E_f$ ), emp. corrected standard enthalpy of formation ( $\Delta H_f^0 - n_M \cdot 38.27 \ kJ/mol$ ) and standard entropy ( $S^0$ ) of all crystalline and gaseous phases compared to selected literature values.

a.) The  $Fd\overline{3}m$ - and  $Fm\overline{3}m$ -structures of Co<sub>3</sub>O<sub>4</sub> and CoO / NiO are distorted due to their magnetic structure.

b.) and references therein

| Phase                           | Structure  | $\Delta E_f$ | $\Delta H_f^0$ | $\Delta H_f^0(Lit.)$                         | $S^0$        | $S^0(Lit.)$                              |
|---------------------------------|------------|--------------|----------------|----------------------------------------------|--------------|------------------------------------------|
|                                 |            | [kJ/mol]     | [kJ/mol]       | [kJ/mol]                                     | [ J/(mol·K)] | [ J/(mol·K)]                             |
| W                               | Im3̄m      | 0.00         | 0.00           |                                              | 34.04        | 32.66 <sup>32</sup>                      |
| WO <sub>2</sub>                 | $P2_{1}/c$ | -562.31      | -596.16        | -586.55 <sup>33</sup> , -589.69 <sup>1</sup> | 50.84        | 50.53 <sup>1</sup>                       |
| WO <sub>2</sub>                 | $C_{2v}$   | 25.24        | 24.78          | ~76.57 <sup>1</sup>                          | 273.53       | 285.50 <sup>1</sup>                      |
| W <sub>18</sub> O <sub>49</sub> | P2/m       | -759.66      | -792.31        | -779.70 <sup>33</sup> , -781.15 <sup>1</sup> | 67.21        | 68.43 <sup>1</sup>                       |
| WO <sub>3</sub>                 | $P2_1/c$   | -822.09      | -853.90        |                                              | 78.45        |                                          |
| WO <sub>3</sub>                 | Pnma       | -821.66      | -853.34        | -842.91 <sup>1,33</sup>                      | 80.15        | 76.57 <sup>34</sup> , 75.91 <sup>1</sup> |
| WO <sub>3</sub>                 | P4/ncc     | -820.59      | -853.29        |                                              | 78.98        |                                          |
| WO <sub>3</sub>                 | $C_{3v}$   | -326.08      | -325.04        | ~ -292.88 <sup>1</sup>                       | 290.70       | 286.44 <sup>1</sup>                      |
| $Pt_2W$                         | Immm       | -34.46       | -34.47         |                                              | 56.85        |                                          |
| PtW                             | P6m2       | -10.70       | -10.73         |                                              | 77.26        |                                          |

**Tab. S1:** Structure, energy of formation ( $\Delta E_f$ ), emp. corrected standard enthalpy of formation ( $\Delta H_f^0 - n_M \cdot 38.27 \ kJ/mol$ ) and standard entropy ( $S^0$ ) of all crystalline and gaseous phases compared to selected literature values.(continued)

a.) The  $Fd\bar{3}m$ - and  $Fm\bar{3}m$ -structures of Co<sub>3</sub>O<sub>4</sub> and CoO / NiO are distorted due to their magnetic structure.

b.) and references therein

- 1 M. W. J. Chase, NIST-JANAF Thermochemical Tables, American Institute of Physics, 4th edn., 1998.
- 2 J. W. Arblaster, J. Phase Equilib. Diffus., 2015, 36, 573–591.
- 3 J. Assal, B. Hallstedt and L. J. Gauckler, J. Am. Ceram. Soc., 1997, 80, 3054–3060.
- 4 A. V. Khvan, I. A. Uspenskaya, N. M. Aristova, Q. Chen, G. Trimarchi, N. M. Konstantinova and A. T. Dinsdale, *Calphad*, 2020, **68**, 101724.
- 5 J. W. Arblaster, J. Phase Equilib. Diffus., 2016, **37**, 229–245.
- 6 A. Fernández Guillermet, Int. J. Thermophys., 1987, 8, 481–510.
- 7 R. D. Holmes, H. S. C. O'Neill and R. J. Arculus, Geochim. Cosmochim. Acta, 1986, 50, 2439–2452.
- 8 M. Chen, B. Hallstedt and L. J. Gauckler, J. Phase Equilibria, 2003, 24, 212–227.
- 9 J. W. Arblaster, J. Phase Equilib. Diffus., 2015, **36**, 422–444.
- 10 B. Hallstedt, D. Risold and L. J. Gauckler, J. Phase Equilibria, 1994, 15, 483–499.
- 11 J. W. Arblaster, Platin. Met. Rev., 1996, 40, 62–63.
- 12 H. S. C. O'Neill and J. Nell, *Geochim. Cosmochim. Acta*, 1997, **61**, 5279–5293.
- 13 E. H. P. Cordfunke, *Thermochim. Acta*, 1981, **50**, 177–185.
- 14 R. T. Wimber, S. W. Hills, N. K. Wahl and C. R. Tempero, *Metall. Trans. A*, 1977, 8, 193–199.
- 15 J. H. Carpenter, J. Less-Common Met., 1989, 152, 35–45.
- 16 P. D. Desai, Int. J. Thermophys., 1987, 8, 763–780.
- 17 H. S. C. O'Neill and M. I. Pownceby, Contrib. Mineral. Petrol., 1993, 114, 296–314.
- 18 J. W. Arblaster, Platin. Met. Rev., 2005, 49, 141–149.
- 19 C.-B. Wang, H.-K. Lin, S.-N. Hsu, T.-H. Huang and H.-C. Chiu, J. Mol. Catal. A: Chem., 2002, 188, 201–208.
- 20 M. Citir, R. B. Metz, L. Belau and M. Ahmed, J. Phys. Chem. A, 2008, 112, 9584–9590.
- 21 C. B. Alcock and G. W. Hooper, Proc. R. Soc. London, Ser. A., 1960, 254, 551–561.
- 22 C. B. Alcock, Platin. Met. Rev., 1961, 5, 134–139.
- 23 A. Olivei, J. Less-Common Met., 1972, 29, 11–23.
- 24 J. W. Arblaster, Calphad, 1996, 20, 343–352.
- 25 K. T. Jacob, S. Mishra and Y. Waseda, Thermochim. Acta, 2000, 348, 61–68.
- 26 M. I. Pownceby and H. S. C. O'Neill, Contrib. Mineral. Petrol., 1994, 118, 130–137.
- 27 J. M. Stuve and M. J. Ferrante, *Thermodynamic properties of rhenium oxides, 8 to 1,400 K*, Dept. of the Interior, Bureau of Mines, Washington, D.C., 1976.
- 28 H. Oppermann, Z. Anorg. Allg. Chem., 1985, 523, 135–144.
- 29 K. T. Jacob, T. Uda, T. H. Okabe and Y. Waseda, High. Temp. Mat. Pr.-ISR, 2000, 19, 11–16.
- 30 J. Nell and H. S. C. O'Neill, Geochim. Cosmochim. Acta, 1997, 61, 4159–4171.
- 31 K. T. Jacob and D. Prusty, J. Alloys Compd., 2010, 507, L17–L20.
- 32 J. W. Arblaster, J. Phase Equilib. Diffus., 2018, 39, 891–907.
- 33 T. V. Charlu and O. J. Kleppa, J. Chem. Thermodyn., 1973, 5, 325–330.
- 34 B.-y. Han, A. V. Khoroshilov, A. V. Tyurin, A. E. Baranchikov, M. I. Razumov, O. S. Ivanova, K. S. Gavrichev and V. K. Ivanov, J. Therm. Anal. Calorim., 2020, **142**, 1533–1543.

**Tab. S2:** Fit parameters obtained for the vibrational heat capacity  $C_{vib}(T)$ , enthalpy  $H_{vib}(T)$  and entropy  $S_{vib}(T)$  of all crystalline phases between 300 K and 1300 K per formula unit. The corrected single-point energy  $E_{corr}$  already contains the mean empirical correction of 38.27 kJ/mol per metal atom. Please see below, how the parameters are related.

| Phase                           | Structure            | $E_{corr}$ | $a_1$        | $a_2$         | $a_3$         | $a_4$                      | $a_4$ $a_5$ |           | $a_7$        |
|---------------------------------|----------------------|------------|--------------|---------------|---------------|----------------------------|-------------|-----------|--------------|
|                                 |                      | [kJ/mol]   | [ J/(mol·K)] | [ J/(mol·K²)] | [ J/(mol·K³)] | [ J/(mol·K <sup>4</sup> )] | [J·K/mol]   | [J/mol]   | [ J/(mol·K)] |
| Ag                              | $Fm\overline{3}m$    | -318.27    | 2.336E+01    | 4.863E-03     | -5.140E-06    | 1.799E-09                  | 9.966E-01   | 4.616E+02 | -9.016E+01   |
| Ag <sub>2</sub> O               | $Pn\overline{3}m$    | -1200.57   | 5.028E+01    | 7.168E-02     | -7.345E-05    | 2.519E-08                  | 9.597E-01   | 7.883E+03 | -1.798E+02   |
| Au                              | $Fm\overline{3}m$    | -373.10    | 2.396E+01    | 3.038E-03     | -3.214E-06    | 1.125E-09                  | 9.978E-01   | 2.875E+02 | -8.606E+01   |
| Au <sub>2</sub> O <sub>3</sub>  | Fdd2                 | -2289.35   | 5.226E+01    | 2.088E-01     | -2.123E-04    | 7.246E-08                  | 9.989E-01   | 2.381E+04 | -2.375E+02   |
| α-Co                            | P6 <sub>3</sub> /mmc | -719.52    | 1.921E+01    | 1.747E-02     | -1.836E-05    | 6.400E-09                  | 9.881E-01   | 1.705E+03 | -8.640E+01   |
| β-Co                            | $Fm\overline{3}m$    | -718.08    | 2.015E+01    | 1.463E-02     | -1.540E-05    | 5.375E-09                  | 9.899E-01   | 1.417E+03 | -8.910E+01   |
| CoO                             | P2/m                 | -1359.96   | 3.049E+01    | 5.367E-02     | -5.584E-05    | 1.935E-08                  | 9.661E-01   | 5.498E+03 | -1.388E+02   |
| $Co_3O_4$                       | $I4_1/amd$           | -4877.38   | 5.069E+01    | 3.589E-01     | -3.660E-04    | 1.252E-07                  | 9.981E-01   | 4.035E+04 | -2.735E+02   |
| Pt₃Co                           | $Pm\overline{3}m$    | -2726.33   | 8.933E+01    | 3.201E-02     | -3.378E-05    | 1.181E-08                  | 9.776E-01   | 3.061E+03 | -3.640E+02   |
| PtCo                            | P4/mmm               | -1396.55   | 4.328E+01    | 2.022E-02     | -2.131E-05    | 7.444E-09                  | 9.860E-01   | 1.945E+03 | -1.805E+02   |
| Cu                              | $Fm\overline{3}m$    | -416.84    | 2.134E+01    | 1.101E-02     | -1.161E-05    | 4.054E-09                  | 9.924E-01   | 1.060E+03 | -9.060E+01   |
| Cu <sub>2</sub> O               | $Pn\overline{3}m$    | -1478.72   | 4.254E+01    | 9.222E-02     | -9.324E-05    | 3.170E-08                  | 9.995E-01   | 1.077E+04 | -1.670E+02   |
| CuO                             | C2/c                 | -1039.15   | 2.610E+01    | 6.996E-02     | -7.208E-05    | 2.481E-08                  | 9.590E-01   | 7.513E+03 | -1.212E+02   |
| Pt₃Cu                           | Сттт                 | -2446.61   | 9.015E+01    | 2.952E-02     | -3.116E-05    | 1.089E-08                  | 9.793E-01   | 2.819E+03 | -3.638E+02   |
| PtCu                            | $R\overline{3}m$     | -1107.82   | 4.419E+01    | 1.744E-02     | -1.840E-05    | 6.429E-09                  | 9.879E-01   | 1.674E+03 | -1.811E+02   |
| lr                              | $Fm\overline{3}m$    | -923.97    | 2.228E+01    | 8.177E-03     | -8.632E-06    | 3.019E-09                  | 9.943E-01   | 7.805E+02 | -9.258E+01   |
| $IrO_2$                         | $P4_2/mnm$           | -2144.03   | 1.837E+01    | 1.580E-01     | -1.577E-04    | 5.315E-08                  | 9.993E-01   | 1.953E+04 | -9.614E+01   |
| Ni                              | $Fm\overline{3}m$    | -573.18    | 1.926E+01    | 1.729E-02     | -1.817E-05    | 6.336E-09                  | 9.883E-01   | 1.688E+03 | -8.644E+01   |
| NiO                             | P2/m                 | -1212.55   | 3.057E+01    | 5.796E-02     | -6.040E-05    | 2.094E-08                  | 9.631E-01   | 5.897E+03 | -1.448E+02   |
| Pt₃Ni                           | $Pm\overline{3}m$    | -2583.23   | 8.933E+01    | 3.201E-02     | -3.378E-05    | 1.181E-08                  | 9.776E-01   | 3.063E+03 | -3.627E+02   |
| PtNi                            | P4/mmm               | -1252.68   | 4.312E+01    | 2.068E-02     | -2.180E-05    | 7.614E-09                  | 9.857E-01   | 1.992E+03 | -1.797E+02   |
| Pt                              | $Fm\overline{3}m$    | -662.15    | 2.296E+01    | 6.085E-03     | -6.426E-06    | 2.248E-09                  | 9.957E-01   | 5.796E+02 | -9.030E+01   |
| PtO                             | $P4_2/mmc$           | -1218.89   | 2.044E+01    | 8.445E-02     | -8.560E-05    | 2.915E-08                  | 9.996E-01   | 9.754E+03 | -9.224E+01   |
| $Pt_3O_4$                       | $Pm\overline{3}n$    | -4298.03   | 6.990E+01    | 2.884E-01     | -2.872E-04    | 9.666E-08                  | 9.987E-01   | 3.594E+04 | -3.087E+02   |
| PtO <sub>2</sub>                | $P\overline{3}m1$    | -1786.02   | 1.877E+01    | 1.611E-01     | -1.635E-04    | 5.574E-08                  | 9.992E-01   | 1.850E+04 | -9.687E+01   |
| PtO <sub>2</sub>                | Pnnm                 | -1799.44   | 2.036E+01    | 1.546E-01     | -1.556E-04    | 5.278E-08                  | 9.992E-01   | 1.839E+04 | -1.052E+02   |
| Re                              | $P6_3/mmc$           | -1261.66   | 2.238E+01    | 7.382E-03     | -7.794E-06    | 2.725E-09                  | 9.948E-01   | 7.046E+02 | -9.114E+01   |
| $ReO_2$                         | $P2_{1}/c$           | -2650.94   | 2.253E+01    | 1.479E-01     | -1.487E-04    | 5.038E-08                  | 9.993E-01   | 1.777E+04 | -1.158E+02   |
| ReO <sub>2</sub>                | Pbcn                 | -2675.06   | 1.948E+01    | 1.560E-01     | -1.564E-04    | 5.289E-08                  | 9.992E-01   | 1.892E+04 | -1.033E+02   |
| ReO₃                            | $Pm\overline{3}m$    | -3335.20   | 2.926E+01    | 1.963E-01     | -1.959E-04    | 6.608E-08                  | 9.991E-01   | 2.433E+04 | -1.491E+02   |
| $Re_2O_7$                       | $P2_{1}2_{1}2_{1}$   | -7204.91   | 7.786E+01    | 3.644E-01     | -3.438E-04    | 1.117E-07                  | 9.989E-01   | 5.656E+04 | -3.295E+02   |
| Rh                              | $Fm\overline{3}m$    | -764.58    | 2.110E+01    | 1.175E-02     | -1.239E-05    | 4.327E-09                  | 9.918E-01   | 1.130E+03 | -9.122E+01   |
| $Rh_2O_3$                       | Pbca                 | -3378.95   | 3.661E+01    | 2.544E-01     | -2.590E-04    | 8.847E-08                  | 9.986E-01   | 2.884E+04 | -1.944E+02   |
| $Rh_2O_3$                       | R3c                  | -3374.05   | 3.671E+01    | 2.544E-01     | -2.591E-04    | 8.851E-08                  | 9.986E-01   | 2.877E+04 | -1.949E+02   |
| RhO <sub>2</sub>                | $P4_2/mnm$           | -1997.48   | 1.898E+01    | 1.580E-01     | -1.588E-04    | 5.378E-08                  | 9.992E-01   | 1.896E+04 | -1.026E+02   |
| W                               | Im3m                 | -1323.22   | 2.162E+01    | 1.017E-02     | -1.073E-05    | 3.748E-09                  | 9.929E-01   | 9.754E+02 | -9.174E+01   |
| WO <sub>2</sub>                 | $P2_{1}/c$           | -2875.14   | 2.370E+01    | 1.453E-01     | -1.465E-04    | 4.972E-08                  | 9.993E-01   | 1.724E+04 | -1.214E+02   |
| W <sub>18</sub> O <sub>49</sub> | P2/m                 | -61488.57  | 5.522E+02    | 3.128E+00     | -3.123E-03    | 1.053E-06                  | 9.852E-01   | 3.885E+05 | -2.740E+03   |
| WO <sub>3</sub>                 | $P2_1/c$             | -3610.59   | 3.594E+01    | 1.713E-01     | -1.674E-04    | 5.570E-08                  | 9.993E-01   | 2.332E+04 | -1.705E+02   |
| WO <sub>3</sub>                 | Pnma                 | -3610.16   | 3.668E+01    | 1.699E-01     | -1.658E-04    | 5.511E-08                  | 9.993E-01   | 2.329E+04 | -1.726E+02   |
| WO <sub>3</sub>                 | P4/ncc               | -3610.59   | 3.594E+01    | 1.713E-01     | -1.674E-04    | 5.570E-08                  | 9.993E-01   | 2.332E+04 | -1.705E+02   |
| $Pt_2W$                         | Immm                 | -2750.89   | 6.727E+01    | 2.274E-02     | -2.401E-05    | 8.397E-09                  | 9.840E-01   | 2.170E+03 | -2.753E+02   |
| PtW                             | P6m2                 | -2006.78   | 4.503E+01    | 1.491E-02     | -1.574E-05    | 5.503E-09                  | 9.895E-01   | 1.423E+03 | -1.831E+02   |

 $G(T) = H(T) + TS(T) = E_{corr} + H_{vib}(T) - TS_{vib}(T)$ 

 $C_{vib}(T) = a + bT + cT^2 + dT^3 - e/T^2$ 

 $H_{vib}(T) = aT + bT^2/2 + cT^3/3 + dT^4/4 - e/T + f$ 

 $S_{vib}(T) = a \ln(T) + bT + cT^2/2 + dT^3/3 - e/2T^2 + g$ 

**Tab. S3:** Comparison of several dispersion correction methods available in VASP 5 and VASP 6 for the Pt(II)-oxides. All calculations employed the PBE functional. While the energies of formation ( $\Delta E_f$ ) listed here are not directly comparable to experimental data, none of the methods except PBE-D3/BJ provides a reasonable estimate for the enthalpy of formation of gaseous PtO<sub>2</sub> (see Tab. S1), which is critical for this investigation. At the same time, based on the *c*-lattice parameter PBE-D3/BJ determines the best geometries.

|             | O <sub>2</sub> | Pt       |                   | α-PtO₂   |              |                   | β-PtO <sub>2</sub> |              |                   | PtO <sub>2</sub> (g) |              |
|-------------|----------------|----------|-------------------|----------|--------------|-------------------|--------------------|--------------|-------------------|----------------------|--------------|
|             | Ε              | Ε        | С                 | Ε        | $\Delta E_f$ | С                 | Ε                  | $\Delta E_f$ | С                 | Ε                    | $\Delta E_f$ |
|             | [kJ/mol]       | [kJ/mol] | [Å]               | [kJ/mol] | [kJ/mol]     | [Å]               | [kJ/mol]           | [kJ/mol]     | [Å]               | [kJ/mol]             | [kJ/mol]     |
| EXP         |                |          | 3.92 <sup>1</sup> |          |              | 4.16 <sup>2</sup> |                    |              | 3.14 <sup>3</sup> |                      |              |
| PBE         | -951.34        | -587.75  | 3.97              | -1684.36 | -145.28      | 4.63              | -1685.72           | -146.63      | 3.18              | -1449.60             | 89.49        |
| MBD@rSC/FI  | -951.34        | -587.73  | 3.97              | -1684.88 | -145.81      | 4.78              | -1685.93           | -146.86      | 3.18              | -1449.60             | 89.47        |
| DDsC        | -951.34        | -587.73  | 3.97              | -1684.88 | -145.81      | 4.78              | -1685.93           | -146.86      | 3.18              | -1449.60             | 89.47        |
| TS/HI       | -951.34        | -635.78  | 3.93              | -1727.13 | -140.01      | 4.23              | -1739.30           | -152.17      | 3.17              | -1449.97             | 137.16       |
| D3/BJ       | -952.04        | -661.45  | 3.92              | -1747.75 | -134.26      | 4.15              | -1761.17           | -147.67      | 3.17              | -1453.51             | 159.99       |
| BEEF-vdW    | -603.08        | -296.15  | 3.99              | -1056.97 | -157.74      | 4.39              | -1062.35           | -163.13      | 3.19              | -780.99              | 118.24       |
| vdW-DF2     | -582.73        | -251.95  | 4.11              | -1039.39 | -204.71      | 4.22              | -1054.37           | -219.69      | 3.26              | -819.78              | 14.90        |
| optB86b-vdW | -605.81        | -368.68  | 3.95              | -1156.50 | -182.01      | 4.07              | -1170.74           | -196.25      | 3.17              | -842.11              | 132.37       |

1 R. W. G. Wyckoff, *Crystal Structures*, Interscience Publishers, New York, 2nd edn., 1963, 1, 7–83.

2 H. R. Hoekstra, S. Siegel and F. X. Gallagher, *Advances in Chemistry*, American Chemical Society, Washington, D.C., 1971, **98**, 39–53.

3 K.-J. Range, F. Rau, U. Klement, A. M. Heyns, *Mater. Res. Bull.*, 1987, **22**, 1541–1547.



**Fig. S1**: Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of silver oxidation (d), Gibbs free energy of electrochemical platinum oxidation (*pH*=0, *T*=298.15 K) (e) and Gibbs free energy of electrochemical silver oxidation (*pH*=0, *T*=298.15 K) (f) of Pt–Ag. Phases and their boundaries are signified in black.



**Fig. S2:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of gold oxidation (d), Gibbs free energy of electrochemical platinum oxidation (*pH*=0, *T*=298.15 K) (e) and Gibbs free energy of electrochemical gold oxidation (*pH*=0, *T*=298.15 K) (f) of Pt–Au. Phases and their boundaries are signified in black.



**Fig. S3:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of PtO<sub>2</sub> formation (c), Gibbs free energy of cobalt oxidation (d), Gibbs free energy of electrochemical platinum oxidation (pH=0, T=298.15 K) (e) and Gibbs free energy of electrochemical cobalt oxidation (pH=0, T=298.15 K) (f) of Pt–Co. Phases and their boundaries are signified in black. The  $Fd\bar{3}m$ -structure of Co<sub>3</sub>O<sub>4</sub> is deformed due to its magnetic structure.



**Fig. S4:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of copper oxidation (d), Gibbs free energy of electrochemical platinum oxidation (*pH*=0, *T*=298.15 K) (e) and Gibbs free energy of electrochemical copper oxidation (*pH*=0, *T*=298.15 K) (f) of Pt–Cu. Phases and their boundaries are signified in black.



**Fig. S5:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of iridium oxidation (d), Gibbs free energy of electrochemical platinum oxidation (*pH*=0, *T*=298.15 K) (e) and Gibbs free energy of electrochemical iridium oxidation (*pH*=0, *T*=298.15 K) (f) of Pt–Ir. Phases and their boundaries are signified in black.



**Fig. S6:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of PtO<sub>2</sub> formation (c), Gibbs free energy of nickel oxidation (d), Gibbs free energy of electrochemical platinum oxidation (pH=0, T=298.15 K) (e) and Gibbs free energy of electrochemical nickel oxidation (pH=0, T=298.15 K) (f) of Pt–Ni. Phases and their boundaries are signified in black. The  $Fm\bar{3}m$ -structure of NiO is distorted due to its magnetic structure.



**Fig. S7:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of rhenium oxidation (d), Gibbs free energy of electrochemical platinum oxidation (pH=0, T=298.15 K) (e) and Gibbs free energy of electrochemical rhenium oxidation (pH=0, T=298.15 K) (f) of Pt–Re. Phases and their boundaries are signified in black.



**Fig. S8:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of rhodium oxidation (d), Gibbs free energy of electrochemical platinum oxidation (pH=0, T=298.15 K) (e) and Gibbs free energy of electrochemical rhodium oxidation (pH=0, T=298.15 K) (f) of Pt–Rh. Phases and their boundaries are signified in black.



**Fig. S9:** Mixing energy (a), Gibbs free energy of mixing (b), Gibbs free energy of  $PtO_2$  formation (c), Gibbs free energy of tungsten oxidation (d), Gibbs free energy of electrochemical platinum oxidation (*pH*=0, *T*=298.15 K) (e) and Gibbs free energy of electrochemical tungsten oxidation (*pH*=0, *T*=298.15 K) (f) of Pt–W. Phases and their boundaries are signified in black.



**Fig. S10:** Gibbs free energy of copper- (a,b) and rhodium oxidation (c,d) with mean empirical and individual correction based on the oxide enthalpies of formation. Phases and their boundaries are signified in black.