Electronic Supplementary Information

Ab Initio Electronic Structure Analysis of Ground and Excited States of HfN^{0,+}

Isuru R. Ariyarathna

Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Email: isuru@lanl.gov

Contents

Table S1 CASSCF molecular orbital compositions of HfN	Page S2
Table S2 r_e , T_e , ω_e , and $\omega_e x_e$ values of low-lying spin-orbit state of HfN	Page S2
Table S3 D _e , r _e , ω_{e} , and $\omega_{e}x_{e}$ values of the HfN(X ² Σ^{+}) and HfN ⁺ (X ¹ Σ^{+}) at the TZ-C-CCSD(T)	Page S2
Table S4 r_e , T_e , ω_e , and $\omega_e x_e$ values of low-lying spin-orbit state of HfN ⁺	Page S3
Figure S1 MRCI DMCs of the lowest five electronic states of HfN ⁺	Page S3

Table S1. The dominant molecular orbital compositions of HfN obtained at the state average CASSCFlevel.

Molecular orbital ^a	Composition
1σ	87.4% 2s (N)
2σ	63.8% 2p _z (N) + 18.2% 5d _{z²} (Hf) + 17.3% 6s (Hf)
3σ	72.4% 6s (Hf) + 15.2% 5d _z ² (Hf)
$1\pi_y$	57.4% 2p _y (N) + 19.0% 5d _{yz} (Hf)
$2\pi_y$	18.0% 6p _y Hf + 47.3% 5d _{yz} Hf + 9.7% 2p _y (N)
$1\delta_{x^2-y^2}$	100% 5d _{x²-y²} (Hf)

^{*a*} Contours of molecular orbitals are given in Figure 2 of the paper.

Table S2. Bond length (r_e , Å), excitation energy (T_e , cm^{-1}), harmonic vibrational frequency (ω_e , cm^{-1}), and anharmonicity ($\omega_e x_e$, cm^{-1}) of the low-lying $\Omega = 1/2$, 1/2, 3/2, 1/2, 3/2, and 5/2 spin-orbit states of HfN at MRCI [cc-pVQZ-PP (60ECP) of Hf and aug-cc-pVQZ of N].

Ω	r _e	Te	ω _e	ω _e X _e	Composition
1/2	1.736	0	916	4.9	99.652% X ² Σ+, 0.346% 1 ² Π
1/2	1.781	6264	862	18.4	94.913% 2 ² Σ+, 5.026% 1 ² Π, 0.061% X ² Σ+
3/2	1.866	7216	939	12.6	100% 1 ² Π
1/2	1.847	8015	1095	7.9	79.096% 1 ² Π, 20.006% 2 ² Σ+,
3/2	1.825	13498	795	1.9	100% 1²Δ
5/2	1.825	15796	797	2.0	100% 1²Δ

Table S3. Dissociation energy with respect to ground state fragments (D_e , kcal/mol), bond length (r_e , Å), harmonic vibrational frequency (ω_e , cm⁻¹), and anharmonicity ($\omega_e x_e$, cm⁻¹) of HfN(X²Σ⁺) and HfN⁺(X¹Σ⁺) at the CCSD(T) with cc-pwCVTZ-PP (60ECP) of Hf and aug-cc-pVTZ of N basis set [TZ-C-CCSD(T)]. The 5s²5p⁶ core electrons of Hf are correlated.

Species	D _e	r _e	ω _e	$\omega_e x_e$
HfN($X^2\Sigma^+$)	128.55	1.724	939	3.8
$HfN^{+}(X^{1}\Sigma^{+})$	111.28	1.679	990	6.7

Table S4. Bond length (r_e , Å), excitation energy (T_e , cm⁻¹), harmonic vibrational frequency (ω_e , cm⁻¹), and anharmonicity ($\omega_e x_e$, cm⁻¹) of the low-lying Ω spin-orbit states of HfN⁺ at MRCI [cc-pVQZ-PP (60ECP) of Hf and aug-cc-pVQZ of N].

Ω	r _e	T _e	ω _e	$\omega_e x_e$	Composition
0+	1.698	0	955	6.5	99.65% X ¹ Σ+, 0.34 % 1 ³ Π
0-	1.766	7939	920	7.0	97.71% 1 ³ Σ+, 2.30% 1 ³ Π
1	1.765	7950	922	6.8	98.19% 1 ³ Σ+, 1.14% 1 ³ П, 0.68% 1 ¹ П
0+	1.774	8517	928	11.7	96.70% 2 ¹ Σ+, 3.26 1 ³ Π
2	1.843	10605	839	5.0	100% 1 ³ П
1	1.845	10749	866	4.1	89.75% 1³Π, 2.39% 1³Σ+, 7.86 1¹Π
0-	1.843	11094	904	1.1	92.32% 1 ³ Π, 7.67% 1 ³ Σ ⁺
0+	1.842	11215	911	4.4	89.76% 1 ³ Π, 1.50% Χ ¹ Σ+, 8.75% 2 ¹ Σ+
1	1.850	12171	890	1.2	90.45% 1 ¹ Π, 6.37% 1 ³ Π, 3.18% 1 ³ Σ ⁺

Figure S1. MRCI DMCs of the lowest five electronic states of HfN⁺ as a function of Hf⁺···N distance $[r(Hf^+···N), Å]$. The CCSD(T) μ values of X¹ Σ ⁺, 1³ Π , and 1³ Σ ⁺ states calculated at the equilibrium bond distances are depicted in blue (at -6.20 D), green (at -4.23 D), and blue (at -3.51 D) cross marks, respectively.