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1. Multisource (MS) TL of hyperparameters

In the main text, we have focused on the case of single-source TL of hyperparameters. The
reason is that our multisource (MS) TL protocol is still under scrutiny. In this protocol, the main
challenge is to decide how to transfer more than one (pseudo)-guess solution to the target model.
In this section, we briefly discuss preliminary design choices aimed at allowing MS-TL of
hyperparameters.

Unlike single-source TL, in multisource TL, the guessing phase returns a collection of N;
pseudo-guess solutions. In case { # 0 and Ny < W — 1, all Ny pseudo-guess solutions are
transferred to the target model. Also transferred is a virtual ensemble solution 89, . defined as

shown in Eq.1,

Ns (£)71
00 = Z Y_g0 (1
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where L; is the optimal loss function value for the it source model and L7 = ¥;,(£;)~1. Note that
the ratio £;"'/L™ is nothing but the weight of the it" source model in the committee of source
models. Assuming that one of the source models, say model k, is considerably better than the others
(L, = Lpest K Lj for Vj # k) then one obtains 62,5~0pes = 5.

FEREBUS users can set directives. Every configuration file contains directives and their
parameters (keyword and value). In the simplest case such as .toml files, every line associates a
directive with its value. For example, a line in a ferebus.toml file with the entry “full_seeding = 1”
will instruct Ferebus to perform a full seeding. In particular here, FEREBUS users can set the
src_overlap directive to 0. This choice instructs the program to generate a set of non-overlapping
source datasets. Because the resulting source models are aware of a broader portion of the target
domain (as compared to any unique source model), they are expected to deliver an excellent cohort
of pseudo-guess solutions. Furthermore, their knowledge content is somehow condensed within the
ensemble solution 82, ., which is also transferred alongside the individual pseudo-guess solutions.

In the case { # 0 and Ng > 1 (FS-MSTL), FEREBUS users can choose between transferring
either the best among pseudo-guess solutions or the virtual ensemble solution. This is specified by
setting the fstl_msrc directive to 0 and 1, respectively.

It is worth highlighting the similarity between our FS-MSTL approach and a recent protocol
by Hu and co-workers!. These authors propose a GP-TL protocol that involves the training of several
full GPR models (sources) on subsets of the target domain, followed by a linear projection of the

guess pseudo-solutions (sets of hyperparameters) onto the target GP. Their protocol also requires
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one inversion of the full covariance matrix. However, unlike our performance-based projector, their
linear predictor exploits the similarity between the sources and target domains. The similarity r
between two distributions A and B is defined as the inverse of the square root of their second-order
Wasserstein distance  WD(A||B). For a set of source solutions 6° = [00, ...,0,?,5], the

hyperparameters of the target GPR model (8) are computed using Eq.2,
6, =1r"R10° (2)

where R is an Ng X N; similarity matrix between all pairs of source domains and 7 is a Ny X 1
similarity matrix between the target GP and each of the sources.

Despite the soundness and elegance of this approach, it breaks down (at least in this
canonical form) when there is only one source model or when the source is the same as the target.
This is because WD(S;||S;) = 0 implies that 77 = oo and R is singular. Therefore, 87 is undefined.

As mentioned before, we are still carrying out systematical tests of the MS-TL protocol.
However, based on the results reported in Section 4.2 of the main text, we can confidently say that
single-sourcing already works perfectly and we are willing to see how multi-sourcing affects the

quality of target models.



2. Data cleaning
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Figure S1. Kernel density fitting of the recovery/reconstruction errors (IQA and Q00) associated with

each molecule in our datasets. The left plots show the distribution of recovery errors in the initial

dataset of 10,000 geometries, while the right plots indicate the proportion of geometries whose

recovery error is lower or equal to some value. The latter curves are respectively truncated at

thresholds of 1 kJ/mol and 1 me for E;o,4 and Qoo since these thresholds accommodate more than

99% of the geometries. Of the initial 10,000 geometries, the cleaning process removed 0, 6, 40, and

94 geometries of BZ, ETL, FAD, and FPL, respectively. This very low removal rate testifies to the high

quality of our training data whose noise level lies within the limit of chemical accuracy (4.2 kJ/mol).

In particular, the BZ data are very clean, with reconstruction errors lower than 0.5 kJ/mol and 0.5

me for the majority of geometries (> 99%).



3. Important control parameters for the GWO algorithm and TL protocol

Table S1. Important control parameters for the grey wolf optimizer and the TL protocol. Default

values are also provided as defined in the config.f90 module of FEREBUS.

. Default
Parameter Description
value

T max Controls the extent of perturbation of the guess solution ~ 0.25
in TL jobs.

Anax The maximum value of the a(t) parameter of the grey wolf 2.0
optimiser intended to maintain the balance between
exploration and exploitation of the hyperparameter
space.

number_of_agents Number of active agents or candidate solutions used to 50
scrutinise the hyperparameter space.

T Maximum number of training iterations. In the FEREBUS 200
configuration file, it is referred to as “max_iterations”.

X The number of relaxation steps. It is definedas y = { X T, 20
where ( is the relaxation weight and 7 is the maximum
number of iterations.

full_seeding Specifies whether the seeding phase should be extended 1
over T steps, or T — y steps. Like other flags, it takes two
possible values, 0 (disabled) or 1 (enabled).

n Number of lucky agents to be promoted when updating 5
the positions of non-leader solutions.

p The frequency at which lucky agents are promoted 5
towards the centroid of the leaders’ positions.

r Defines the extent of random walks of lucky agents  0.20

around the centroid of leaders.




4, Why choose the IHCOV approach with an anisotropic kernel?

The hyperparameters of a GPR model can be optimized by maximizing the log marginal
likelihood function of the GP. This popular approach, known as Type-Il maximum likelihood (ML-II),
offers the advantage of being analytically tractable. As a result, any off-the-shelf gradient-based
optimizer can be used to scrutinize the hyperparameter space (HS).

Despite its practical suitability, the ML-II protocol suffers from well-known limitations: it is
very sensitive to the presence of outliers in the training data3 and tends to be less robust to model
misspecification as compared to cross-validation (CV)*. Moreover, the ML-Il protocol is prone to
numerical instability in the noise-free regime (i.e., when g2 = 0) where errors are accentuated by
vector-matrix-vector operations involving a less regularised and ill-conditioned covariance matrix°.
Fortunately, FEREBUS is now equipped with an alternative cross-validation (CV) protocol for
hyperparameter optimization, more resistant to model misspecification and less costly than the
popular leave-one-out CV (see main text for more details).

In this section, we justify the choice put on the IHOCV protocol over ML-Il and anisotropic
kernels over their isotropic analogs when it came to designing our TL protocol. We compared the
performance of DL models trained on 8000 geometries (and tested on the same 1000 geometries)
using isotropic and anisotropic kernels in the framework of the IHOCV and ML-Il protocols. The
isotropic IHOCV-GPR models were trained via a grid-based search along the directions of the unique
kernel parameter @ and the regularisation noise ;2. The grid was made of 50%X50 points, or 50 points
in each dimension of the HS. The latter space was defined as [0.0,3.0] and [107%,107*] for 8 and
02, respectively. The nodes/points along the second dimension were positioned on the logarithmic
scale by uniformly sampling (on that scale) 50 points between the lower and upper boundaries.

Table S1 reports the results obtained in terms of the reconstruction of the molecular IQA
energy and charge. The data in this Table demonstrate the consistent superiority of IHOCV3"s
models over IHOCV™® and ML-112"*° models when it comes to reproducing IQA energies and charges.
IHOCV*®* models compete with IHOCV3"*° in the case of IQA energies of BZ, while ML-1>"*® models
generally exhibit the worst generalization capability, sometimes leading to MAEs being almost twice
as large as those of IHOCV2"° models. These findings motivated our choice for the IHOCV model

selection approach with an anisotropic kernel.



Table S2. Performance (MAEs) of DL models trained on 8000 geometries using both an isotropic and

an anisotropic kernel within the IHCOV framework. Anisotropic ML-Il models are also reported for

comparison.
Model BZ ETL FAD FPL
IQA energy (kJ/mol)
IHOCV3niso 0.210 0.977 0.489 0.604
IHOCV's° 0.213 1.409 0.561 0.729
ML-|]3niso 0.349 1.804 0.858 0.821
Qoo (me)
IHOCV3niso 0.274 1.954 0.423 0.903
IHOCVs° 0.377 3.198 0.511 1.203
ML-|[3niso 0.398 2.351 0.659 1.113
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Figure S2. Molecular learning S-curves of DL Ejy, and Qoo models. These curves move to the left as the model is improved through data
augmentation. As expected, the purple curve at the rightmost corresponds to the smallest training set, while the black curve is at the leftmost.



8.0

> »
| | | |
®
(5] 1
’ 11
HuzIo k _04
w ( ‘
[ ]
13
°o
iy
e o @
o o o o
w - ™~ (=]
(dw) o0pIVIN
o o
_ [ |
see P P?
fuzro * o
E o o0
/ ] {
o o0
7
_.._.
o
\\
[ == ® @

e o o o o
L- 3 m ™~ - o
(1ow/M) AV
NOUZI

[+2]

e ® © < N o
- o o o (-] o
(dw) o0pIVI
?e |
NUZI {

o
nD. < ~ > o

) =) o
(10W/B1) AV

ooos

000
N

00095

ooos ¢

gs

oooY C

000E

Tra

oooz

000T

o008

000L
o

H
0009

o
o
o
wn
set

000V

ining

000€

Tra

oooz

oooT

4.0

1.5

1 0008

000L

-8

i
00095

cC o
®

H
N

FPL @
a
-

g
000s 7

r -
°

ooor

e
.\"‘*o—o

000€'m

0002

[ 3
.‘--u.._' ‘_‘_—::_
Ti

.DI'\\.hm

0001
° °

m ~N ~
(W) o0paVIN

0.0

® ﬂ.. 0008

_ 3 000
_. @ ® ! o
I N
@ 00095
Fuzxz -
w ooos &

/ .

000v €
000 '®
9

0002

0001

5.\
e
| G
Training

0

wn

(1ow/f)

2.0
0.0

- o

voldVW

@@ ooos

)@ o000z
® ¢ g
_0.. - 0009°7

]
' ooos @
/ o
@ - ooov c
’ £
@0 000£'m
[/ F
- 1 0002
. e ' ooot

@
@® - ooos
@

@
@

UXIOo

FAD

N
00095

FAD —@—
C
H
o

]
1 000s ¥
| 000Y €
1 000£'m
} 9

' 0002

A~ © & o
(low/M) yp AV

Figure S3. Learning curves of anisotropic GPR models trained on 1000 to 8000 geometries. Element-wise models (collections of atomic models

of the same element) saturate faster than molecular ones.



6. Training timings of DL models

Table S3. Training timings of atomic GPR models of BZ, ETL, FAD and FPL. The wall times are
shown in parentheses. All timings are expressed in hours and correspond to the short

CPU/core or wall time recorded for a set of models trained on the same number of

geometries.
N Bz ETL FAD FPL
1000 0.203 (0.240) 0.163 (0.189) 0.176 (0.207) 0.222 (0.266)
2000 0.516 (0.598) 0.409 (0.467) 0.455 (0.521) 0.559 (0.635)
3000 0.996 (1.138) 0.843 (0.968) 0.828 (0.940) 0.999 (1.150)
4000 1.703 (1.868) 1.242 (1.412) 1.346 (1.457) 1.713 (1.937)
5000 2.452 (2.689) 1.763 (1.938) 2.072 (2.333) 2.539 (2.783)
6000 3.112 (3.486) 2.732 (3.075) 3.234 (3.569) 3.371(3.716)
7000 4.176 (4.601) 3.465 (3.813) 4.245 (4.615) 4.732 (5.118)
8000 5.751 (6.675) 4.990 (5.508) 6.033 (6.488) 6.498 (7.101)
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7. Performance and speedup factors of baseline and FS-TL models

Table S4. Predictive MAEs of baseline and FS-TL models for the reconstruction of molecular

energies (in kJ/mol) and charges (in me). DL data are provided for comparison.

Model BZ ETL FAD FPL
IQA energy (kJ/mol)
DL 0.210 0.977 0.489 0.604
DI'% 7.509 16.022 9.770 11.725
DILO% 0.718 4.236 1.743 2.881
DIL*5% 0.400 2.231 0.826 1.294
TL399 0.391 4.001 2.107 1.839
TL399 0.338 2.202 1.068 1.164
TLY% 0.215 1.273 0.542 0.615
RBL 0.376 3.988 1.293 1.868
Qoo (me)
DL 0.274 1.954 0.423 0.903
DI'% 10.686 29.873 11.562 23.339
DILO% 1.132 8.378 2.842 3.637
DIL25% 0.647 4.552 0.866 2.103
TL9Y 0.542 9.496 1.626 3.221
TL399 0.389 3.236 1.217 1.831
TL3% 0.275 2.255 0.591 1.035
RBL 0.534 6.269 1.369 2.834

Table S5. Speedup factors of baseline and FS-TL models as compared to the largest DL models.

These metrics were computed as the ratio between the wall time of the test model and that

of the reference DL model.

Model BZ ETL FAD FPL
DL 1.0 1.0 1.0 1.0
DL'% 513.5 612.0 648.8 591.8
DL10% 35.7 39.1 38.2 35.2
DL?>% 11.2 11.8 12.5 11.2
TLY99 109.4 117.2 115.9 109.2
TL39S 39.0 34.9 41.9 35.5
TLYY%S 13.7 12.7 13.3 13.3
RBL 20.4 17.3 17.8 19.2

11



8. Performance and speedup factors of relaxed TL models

Table S6. Predictive MAEs of the shortly relaxed TL models for the reconstruction of molecular

energies (in kJ/mol) and charges (in me). DL data are provided for comparison.

Model BZ ETL FAD FPL

IQA energy (kJ/mol)

DL 0.210 0.977 0.489 0.604
TLY%S 0.268 1.659 0.859 1.102
TL393 0.261 1.302 0.648 1.045
TLY%: 0.207 1.031 0.482 0.626
TL3SS 0.262 1.332 0.782 0.888
TLYY 0.232 1.307 0.554 0.829
TL3% 0.215 0.910 0.462 0.597
Qoo (Me)
DL 0.274 1.954 0.423 0.903
TLY%S 0.364 3.279 0.723 1.603
TLY9S 0.324 2.812 0.709 1.597
TL3%: 0.270 2.072 0.415 0.978
TLYLI 0.340 2.945 0.547 1.437
TLY19 0.303 2.249 0.538 1.371
TLY% 0.298 1.881 0.418 0.867

Table S7. Speedup factors of the shortly relaxed TL models in comparison with the largest DL
models. These metrics were computed as the ratio between the wall time of the test model

and that of the reference DL model.

Model BZ ETL FAD FPL
DL 1.0 1.0 1.0 1.0
TLY%S 16.8 22.2 19.7 17.2
TLY%S 14.1 15.7 16.3 14.0
TLY92 8.0 8.1 8.3 7.9
TL3SS 8.6 10.9 11.7 9.1
TL319 8.7 8.5 9.4 9.5
TL92 5.3 6.0 6.1 5.7

12



9. Prediction of vibrational normal modes

Table S8. Reference (GAUSSIAN) and FFLUX-predicted vibrational frequencies of BZ using both DL and TL models. The absolute deviations (A) of
each model from the reference are provided. All the frequencies are expressed in cm™. The worst predicted mode is written in bold.

Mode Ref. DL TL APt AT Mode Ref. DL TL APt AT

1 412.52 418.91 419.93 6.39 7.41 16 1173.23 1184.45 1184.20 11.23 10.97
2 412.56 422.80 42441 10.24 11.85 17 1197.60 1208.04 1207.57 10.44 9.97
3 623.14 629.89 630.79 6.75 7.65 18 1197.70 1208.61 1209.23 10.90 11.52
4 623.16 632.00 634.28 8.84 11.12 19 1334.18 1349.99 1352.92 15.81 18.74
5 693.17 706.62 707.00 13.45 13.83 20 1387.91 1390.81 1390.91 2.90 3.00
6 721.40 726.41 728.54 5.01 7.14 21 1515.68 1518.29 1516.42 2.61 0.73
7 870.75 879.82 880.75 9.06 10.00 22 1515.78 1521.59 1522.68 5.81 6.90
8 870.87 881.51 884.29 10.64 13.42 23 1633.46 1640.24 1643.15 6.78 9.69
9 996.39 1002.24 1003.69 5.85 7.30 24 1633.71 1648.62 1650.31 14.90 16.59
10 996.50 1004.88 1006.15 8.38 9.65 25 3156.79 3191.16 3188.43 34.37 31.65
11 1013.78 1027.89 1028.75 14.11 14.97 26 3166.50 3206.08 3199.60 39.58 33.10
12 1022.99 1033.03 1032.76 10.04 9.77 27 3166.73 3207.18 3209.83 40.45 43.10
13 1030.52 1034.46 1035.11 3.94 4.59 28 3181.90 3218.44 3220.50 36.53 38.60
14 1060.45 1068.52 1070.80 8.07 10.35 29 3182.13 3221.36 3223.33 39.23 41.20
15 1060.50 1075.26 1076.82 14.76 16.32 30 3191.96 3241.21 3246.21 49.26 54.25

13



Table S9. Reference (GAUSSIAN) and FFLUX-predicted vibrational frequencies of ETL using both DL and TL models. The absolute deviations (A)

of each model from the reference are provided. All the frequencies are expressed in cm™. The worst predicted mode is written in bold.

Mode Ref. DL TL APt AT Mode  Ref. DL TL APt AT
1 256.38 179.70 193.16 76.67 63.22 12 1416.25 1403.48 1402.09 12.77 14.16
2 269.31 263.64 270.61 5.66 1.31 13 1488.27 1491.66 1484.53 3.39 3.74
3 420.17 426.61 424.75 6.44 4,58 14 1493.21 1500.76 1496.16 7.55 2.95
4 805.89 809.82 800.21 3.93 5.68 15 1517.07 1532.00 1525.22 14.93 8.15
5 881.52 896.25 891.94 14.73 10.42 16 2989.56 3016.22 2997.57 26.66 7.97
6 1057.07 1063.59 1054.57 6.52 2.50 17 3019.32 3047.34 3030.00 28.02 10.68
7 1067.13 1088.80 1087.07 21.67 19.93 18 3063.81 3109.56 3088.69 45.76 24.88
8 1131.61 1144.95 1133.66 13.34 2.05 19 3084.29 3147.51 3135.61 63.22 51.32
9 1279.45 1281.23 1267.93 1.79 11.52 20 3098.39 3154.27 3151.34 55.88 52.95
10 1368.16 1361.02 1347.71 7.14 20.45 21 3809.63 3746.97 3746.66 62.66 62.96
11 1403.12 1393.62 1385.11 9.50 18.01

14



Table $10. Reference (GAUSSIAN) and FFLUX-predicted vibrational frequencies of FAD using both DL and TL models. The absolute deviations (A)
of each model from the reference are provided. All the frequencies are expressed in cm™. The worst predicted mode is written in bold.

Mode Ref. DL TL APt AT Mode Ref. DL TL APt AT

1 78.50 72.84 72.78 5.65 5.72 13 1265.35 1257.45 1260.43 7.91 4.92
2 170.22 165.36 169.58 4.86 0.65 14 1267.09 1285.62 1280.66 18.53 13.57
3 185.46 173.27 172.81 12.19 12.65 15 1398.36 1396.06 1392.98 2.30 5.38
4 201.45 209.26 207.55 7.80 6.10 16 1403.70 1407.64 1403.33 3.94 0.37
5 261.46 252.20 249.89 9.25 11.57 17 1441.56 1447.64 1442.11 6.09 0.56
6 267.94 271.07 269.54 3.13 1.59 18 1467.60 1490.09 1483.71 22.49 16.11
7 681.93 689.33 690.22 7.40 8.29 19 1704.04 1704.15 1697.86 0.11 6.18
8 714.75 719.49 718.94 4.74 4.18 20 1777.50 1780.18 1776.14 2.67 1.37
9 982.05 944.30 950.11 37.75 31.94 21 3063.01 3089.31 3085.91 26.30 22.90
10 1001.00 978.47 977.41 22.54 23.59 22 3095.92 3128.52 3091.16 32.60 4.76
11 1073.68 1048.82 1047.69 24.86 25.99 23 3107.15 3162.07 3149.80 54.92 42.65
12 1101.08 1078.92 1078.48 22.15 22.60 24 3183.10 3204.25 3195.49 21.16 12.39
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Table S11. Reference (GAUSSIAN) and FFLUX-predicted vibrational frequencies of FPL using both DL and TL models. The absolute deviations (A)
of each model from the reference are provided. All the frequencies are expressed in cm™. The worst predicted mode is written in bold.

Mode Ref. DL TL APt AT Mode Ref. DL TL APt AT

1 71.35 37.75 38.22 33.60 33.13 16 1243.14 1273.46 1263.87 30.32 20.74
2 267.35 283.63 281.26 16.28 13.90 17 1316.44 1329.02 1324.72 12.58 8.28
3 321.31 329.70 327.20 8.39 5.89 18 1385.67 1388.73 1387.41 3.06 1.74
4 501.10 523.81 522.06 22.70 20.95 19 1415.49 1431.22 1427.45 15.73 11.97
5 634.52 657.01 652.88 22.49 18.36 20 1429.95 1449.51 1447.69 19.56 17.74
6 652.58 673.89 673.75 21.31 21.17 21 1490.85 1490.61 1485.20 0.23 5.65
7 687.24 704.87 702.36 17.63 15.12 22 1493.69 1507.73 1496.88 14.04 3.19
8 787.06 803.86 797.77 16.81 10.71 23 1509.49 1521.80 1526.13 12.31 16.63
9 869.18 883.21 877.03 14.04 7.85 24 1620.10 1629.71 1621.39 9.61 1.29
10 947.48 965.38 961.84 17.90 14.36 25 3034.72 3127.21 3107.33 92.49 72.61
11 1000.55 1007.85 1002.73 7.30 2.19 26 3087.44 3145.26 3142.42 57.82 54.97
12 1011.55 1030.07 1022.99 18.51 11.44 27 3111.86 3174.60 3171.28 62.74 59.42
13 1066.40 1077.13 1071.24 10.73 4.84 28 3245.60 3296.77 3293.02 51.17 47.42
14 1067.68 1083.64 1075.31 15.96 7.63 29 3264.28 3329.79 3339.52 65.51 75.24
15 1164.37 1180.46 1182.15 16.09 17.78 30 3681.75 3694.84 3696.64 13.08 14.89
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10. Electronic energy ranges within the set of optimization starting

geometries

Table S12. Range of electronic energies (in kJ/mol) within the pool of starting geometries for
FFLUX optimization. These electronic energies were computed at the reference level of theory,
i.e., B3LYP/aug-cc-pVTZ for BZ and ETL, and B3LYP/6-31+G(d,p) for FAD and FPL. For
comparison, we also provide similar ranges within the training sets (TS). DF is the

displacement factor used in eq (31) of the main text, which acts as a scaling factor.

Electronic energy range (kJ/mol)

DF

BZ ETL FAD FPL
0.1 25.2 21.6 44.0 30.8
0.2 104.9 100.3 183.6 165.8
0.3 246.9 267.6 442.2 503.7
0.4 462.2 578.0 863.7 1242.9
0.5 765.8 1127.1 1520.0 1823.3
TS 88.5 154.6 102.4 92.9
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