Water vapor effect on the physico-geometrical reaction pathway and kinetics of the multistep thermal dehydration of calcium chloride dihydrate

Kazuki Kato, Mito Hotta, and Nobuyoshi Koga*

Department of Science Education, Division of Educational Sciences, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

Contents

Abstract

S1. Water vapor effect on the reaction pathways3 Weibull function s3 Figure S1. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.01 \pm 0.04 \mathrm{mg}$) to form CC-AHunder linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=0.8 \mathrm{kPa}$.s3

Figure S2. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.02 \pm 0.06 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=1.8 \mathrm{kPa}$.s 4 Figure S3. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.03 \pm 0.05 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=4.2 \mathrm{kPa} . \ldots \ldots \ldots . . . \mathrm{s} 5$ Figure S4. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.02 \pm 0.04 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=7.5 \mathrm{kPa} . \ldots \ldots \mathrm{s} 6$ Figure S5. TG curves for hydration process of CC-AH under linear cooling at $1 \mathrm{~K} \mathrm{~min}^{-1}$ in a stream of wet N_{2} $\left(q_{\mathrm{v}}=200 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$: (a) typical measurement scheme for the rehydration process and (b) TG curves at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values.s7 S2. Kinetics of the component reaction steps at different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values. s7

Figure S6. An example of TG-DTG measurement conducted for the two-step thermal dehydration process ofCC-DH to form CC-AH via CC-MH recorded by heating the sample ($m_{0}=3.084 \mathrm{mg}$) according to two-stepisothermal heating program in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=1.8 \mathrm{kPa}$s7
Figure S7. Kinetic curves for the first reaction step of the two-step thermal dehydration of CC-DH to form CC- AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under linear nonisothermal conditions at various β values in a stream of wet N_{2} with different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S8. Kinetic curves for the second reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under linear nonisothermal conditions at different β values in a stream of wet N_{2} with different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S9. Kinetic curves for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal and linear nonisothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, represented in the 3D kinetic coordinate of T^{-1}, α, and $\ln (\mathrm{d} \alpha / \mathrm{d} t)$: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa . .s9
Figure S10. Kinetic curves for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal and linear nonisothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, represented in the 3D kinetic coordinate of T^{-1}, α, and $\ln (\mathrm{d} \alpha / \mathrm{d} t)$: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .
Figure S11. Friedman plots at different α_{1} for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa . .s10
Figure S12. Friedman plots at different α_{2} for the second reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa . .s 10

[^0]
Supplementary Information

Figure S13. Apparent linear correlations observed between $\ln A_{i}$ and $E_{\mathrm{a}, i}$ values established for the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH using the conventional Friedman plot and master plot methods. .s11
S3. Kinetic modeling based on IP-SR-PBR(n) models ... S 11
Table S1. Differential kinetic equations of IP-SR-PBR (n) models .. 111
Figure S14. Typical fitting results using SR-PBR(2) model for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .s 12
Figure S15. Typical fitting results using IP-SR-PBR(2) model for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right.$) values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) $7.5 \mathrm{kPa} . \ldots \mathrm{s} 12$ Table S2. Optimized rate constants of the $\operatorname{SR}-\operatorname{PBR}(n)$ models for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various temperatures and $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values .s13
Table S3. Optimized rate constants of the IP-SR $-\operatorname{PBR}(n)$ models for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form $\mathrm{CC}-\mathrm{AH})$ at various temperatures and $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values .s 14
Figure S16. Arrhenius plots of the individual physico-geometrical reaction steps for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at varying $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) SR and (b) $\mathrm{PBR}(2)$. .s15
Figure S17. Arrhenius plots of the individual physico-geometrical reaction steps for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CCMH to form CC-AH) at varying $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) IP, (b) SR, and (c) PBR(2) .s 15
Table S4. Apparent Arrhenius parameters of the component physico-geometrical processes involved in the twostep thermal dehydration process of CC-DH to form $\mathrm{CC}-\mathrm{AH}$ via $\mathrm{CC}-\mathrm{MH}$ at different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, as determined based on the $\mathrm{SR}-\mathrm{PBR}(2)$ and IP-SR-PBR(2) models .s16
Figure S18. Apparent linear correlations observed between $\ln A_{i}$ and $E_{\mathrm{a}, i}$ values determined for the individual physico-geometrical reaction processes of the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH based on SR-PBR(3) and IP-SR-PBR(3) models, respectively: (a) first and (b) second reaction steps. .s16

S1. Water vapor effect on the reaction pathway

Weibull function

$$
\begin{equation*}
F(t)=a_{0}\left(\frac{a_{3}-1}{a_{3}}\right)^{\frac{1-a_{3}}{a_{3}}}\left\{\frac{t-a_{1}}{a_{2}}+\left(\frac{a_{3}-1}{a_{3}}\right)^{\frac{1}{a_{3}}}\right\}^{a_{3}-1} \exp \left[-\left\{\frac{t-a_{1}}{a_{2}}+\left(\frac{a_{3}-1}{a_{3}}\right)^{\frac{1}{a_{3}}}\right\}^{a_{3}}+\frac{a_{3}-1}{a_{3}}\right] \tag{S1}
\end{equation*}
$$

where a_{0} is the amplitude, a_{1} is the center, a_{2} is the width, and a_{3} is the shape parameters.

Figure S1. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.01 \pm 0.04 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=0.8 \mathrm{kPa}$.

Figure S2. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.02 \pm 0.06 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=1.8 \mathrm{kPa}$.

Figure S3. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.03 \pm 0.05 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=4.2 \mathrm{kPa}$.

Figure S4. MDA results for the thermal dehydration process of CC-DH ($m_{0}=3.02 \pm 0.04 \mathrm{mg}$) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=7.5 \mathrm{kPa}$.

(b)

Figure S5. TG curves for hydration process of CC-AH under linear cooling at $1 \mathrm{~K} \mathrm{~min}^{-1}$ in a stream of wet $\mathrm{N}_{2}\left(q_{\mathrm{v}}\right.$ $=200 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$): (a) typical measurement scheme for the rehydration process and (b) TG curves at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values. Measurements were performed using a humidity-controlled TG system constructed by coupling TG-DTA (TG8122, Rigaku) and a humidity controller (me-40DP-2PHW, Micro Equipment Co.). Initially, the CC-DH sample (300-500 $\mu \mathrm{m}, m_{0}$: approximately 3.0 mg) was heated to 473 K at a β of $5 \mathrm{~K} \mathrm{~min}^{-1}$ in a stream of dry N_{2} and subsequently cooled to a temperature of $423-408 \mathrm{~K}$ at a cooling rate of $5 \mathrm{~K} \mathrm{~min}{ }^{-1}$.

S2. Kinetics of the component reaction steps at different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values

Figure S6. An example of TG-DTG measurement conducted for the two-step thermal dehydration process of CCDH to form CC-AH via CC-MH recorded by heating the sample ($m_{0}=3.084 \mathrm{mg}$) according to two-step isothermal heating program in a stream of wet N_{2} with $p\left(\mathrm{H}_{2} \mathrm{O}\right)=1.8 \mathrm{kPa}$.

Figure S7. Kinetic curves for the first reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under linear nonisothermal conditions at various β values in a stream of wet N_{2} with different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S8. Kinetic curves for the second reaction step of the two-step thermal dehydration of CC-DH to form CCAH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under linear nonisothermal conditions at different β values in a stream of wet N_{2} with different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S9. Kinetic curves for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal and linear nonisothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, represented in the 3D kinetic coordinate of T^{-1}, α_{1}, and $\ln \left(\mathrm{d} \alpha_{1} / \mathrm{d} t\right)$: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S10. Kinetic curves for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal and linear nonisothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, represented in the 3 D kinetic coordinate of T^{-1}, α_{2}, and $\ln \left(\mathrm{d} \alpha_{2} / \mathrm{d} t\right)$: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S11. Friedman plots at different α_{1} for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S12. Friedman plots at different α_{2} for the second reaction step of the two-step thermal dehydration of CCDH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form $\mathrm{CC}-\mathrm{AH}$) at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S13. Apparent linear correlations observed between $\ln A_{i}$ and $E_{\mathrm{a}, i}$ values established for the first and second reaction steps of the thermal dehydration process of $\mathrm{CC}-\mathrm{DH}$ to form $\mathrm{CC}-\mathrm{AH}$ via $\mathrm{CC}-\mathrm{MH}$ using the conventional Friedman plot and master plot methods.

S3. Kinetic modeling based on IP-SR-PBR(n) models

Table S1. Differential kinetic equations of IP-SR-PBR(n) models
$n \quad \frac{\mathrm{~d} \alpha}{\mathrm{~d} t}=$
$1 \quad$ a) $t-1 / k_{\mathrm{IP}} \leq 1 / k_{\operatorname{PBR}(1)}$:

$$
k_{\mathrm{PBR}(1)}\left[1-\exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)\right]
$$

b) $t-1 / k_{\mathrm{IP}} \geq 1 / k_{\mathrm{PBR}(1)}$:

$$
k_{\mathrm{PBR}(1)} \exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)\left[\exp \left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(1)}}\right)-1\right]
$$

2 a) $t-1 / k_{\mathrm{IP}} \leq 1 / k_{\operatorname{PBR}(2)}$:

$$
-2 k_{\mathrm{PBR}(2)}\left[\left(1+\frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}}\right) \exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)+k_{\mathrm{PBR}(2)}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)-\left(1+\frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}}\right)\right]
$$

b) $t-1 / k_{\mathrm{IP}} \geq 1 / k_{\mathrm{PBR}(2)}$:

$$
-2 k_{\mathrm{PBR}(2)} \exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)\left[1+\frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}}-\frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}} \exp \left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(2)}}\right)\right]
$$

$3 \quad$ a) $t-1 / k_{\mathrm{IP}} \leq 1 / k_{\mathrm{PBR}(3)}$:

$$
\begin{aligned}
-3 k_{\mathrm{PBR}(3)}[(1+ & \left.2 \frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}+2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^{2}\right) \exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)-\left(-k_{\mathrm{PBR}(3)}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)^{2} \\
+ & \left.2 k_{\mathrm{PBR}(3)}\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}+1\right)\left(t-\frac{1}{k_{\mathrm{IP}}}\right)-\left(1+2 \frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}+2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^{2}\right)\right]
\end{aligned}
$$

b) $t-1 / k_{\mathrm{IP}} \geq 1 / k_{\mathrm{PBR}(3)}$:

$$
3 k_{\mathrm{PBR}(3)} \exp \left(-k_{\mathrm{SR}}\left(t-\frac{1}{k_{\mathrm{IP}}}\right)\right)\left[2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^{2}\left(\exp \left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(3)}}\right)-1\right)-\left(1+2 \frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)\right]
$$

Figure S14. Typical fitting results using SR-PBR(2) model for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Figure S15. Typical fitting results using IP-SR-PBR(2) model for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal conditions at various $p\left(\mathrm{H}_{2} \mathrm{O}\right.$) values: (a) 0.8 , (b) 1.8 , (c) 4.2 , and (d) 7.5 kPa .

Supplementary Information

Table S2. Optimized rate constants of the $\operatorname{SR}-\operatorname{PBR}(n)$ models for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various temperatures and $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values

model	$p\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{kPa}$	T/K	Rate constant			$\mathrm{R}^{2, a}$
			$\boldsymbol{k}_{\text {IP, } / 1 / \mathbf{s}^{-1}}$	$\boldsymbol{k}_{\text {SR, }, 1 / \mathbf{s}^{-1}}$	$\boldsymbol{k}_{\operatorname{PBR}(n), 1 / \mathbf{s}^{\mathbf{- 1}}}$	
SR-PBR(3)	0.8	356.7	------	3.75×10^{-3}	3.67×10^{-4}	0.9922
		354.6	------	3.05×10^{-3}	2.90×10^{-4}	0.9948
		352.5	------	1.86×10^{-3}	1.82×10^{-4}	0.9946
		350.3	------	1.51×10^{-3}	1.30×10^{-4}	0.9848
		347.8	------	9.65×10^{-4}	6.24×10^{-5}	0.9822
		345.3	------	7.39×10^{-4}	3.70×10^{-5}	0.9789
	1.7	368.8	------	3.62×10^{-3}	5.68×10^{-4}	0.9965
		366.5	------	1.74×10^{-3}	4.02×10^{-4}	0.9910
		362.4	------	6.02×10^{-4}	1.50×10^{-4}	0.9741
		361.4	------	5.88×10^{-4}	1.41×10^{-4}	0.9903
		359.4	------	3.68×10^{-4}	7.12×10^{-5}	0.9726
	4.1	387.8	------	5.83×10^{-3}	1.48×10^{-3}	0.9353
		382.4	------	2.22×10^{-3}	5.65×10^{-4}	0.9690
		378.5	------	7.26×10^{-4}	1.91×10^{-4}	0.9211
	7.4	402.3	------	8.44×10^{-3}	2.05×10^{-3}	0.9427
		400.3	------	4.07×10^{-3}	1.00×10^{-3}	0.9860
		398.0	------	2.19×10^{-3}	5.94×10^{-4}	0.9960
		395.5	------	2.21×10^{-3}	3.57×10^{-4}	0.9955
		392.7	--	7.54×10^{-4}	1.51×10^{-4}	0.9957
SR-PBR(2)	0.8	356.7	------	4.55×10^{-3}	4.98×10^{-4}	0.9921
		354.6	------	4.32×10^{-3}	3.63×10^{-4}	0.9963
		352.5	------	2.61×10^{-3}	2.28×10^{-4}	0.9964
		350.3	------	2.34×10^{-3}	1.74×10^{-4}	0.9941
		347.8	------	1.61×10^{-3}	8.00×10^{-5}	0.9753
		345.3	------	1.23×10^{-3}	4.77×10^{-5}	0.9876
	1.7	368.8	------	3.59×10^{-3}	7.72×10^{-4}	0.9944
		366.5	------	1.99×10^{-3}	5.01×10^{-4}	0.9975
		362.4	------	6.65×10^{-4}	1.91×10^{-4}	0.9864
		361.4	------	7.18×10^{-4}	1.70×10^{-4}	0.9943
		359.4	------	3.30×10^{-4}	1.03×10^{-4}	0.9867
	4.1	387.8	------	6.82×10^{-3}	1.83×10^{-3}	0.9869
		382.4	------	2.39×10^{-3}	7.32×10^{-4}	0.9831
		378.5	------	7.80×10^{-4}	2.51×10^{-4}	0.9423
	7.4	402.3	------	9.93×10^{-3}	2.64×10^{-3}	0.9632
		400.3	------	5.43×10^{-3}	1.17×10^{-3}	0.9930
		398.0	------	3.26×10^{-3}	7.84×10^{-4}	0.9711
		395.5	------	2.53×10^{-3}	4.55×10^{-4}	0.9964
		392.7	------	1.00×10^{-3}	1.78×10^{-4}	0.9959
${ }^{\text {a }}$ Determination coefficient of the nonlinear least-squares analysis.						

Supplementary Information

Table S3. Optimized rate constants of the $\operatorname{IP}-\operatorname{SR}-\operatorname{PBR}(n)$ models for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC$\mathrm{AH})$ at various temperatures and $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values

model	$p\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{kPa}$	T/K	Rate constant			$\mathbf{R}^{2, a}$
			$\boldsymbol{k}_{\mathbf{I P}, 2} / \mathbf{s}^{-1}$	$k_{\text {SR, } 2 / \mathbf{s}^{-1}}$	$k_{\operatorname{PBR}(n), 2} / \mathbf{s}^{-1}$	
IP-SR-PBR(3)	0.8	386.7	------	6.30×10^{-3}	1.29×10^{-3}	0.9792
		384.7	------	3.89×10^{-3}	8.37×10^{-4}	0.9948
		382.8	9.43×10^{-3}	2.38×10^{-3}	4.30×10^{-4}	0.9942
		380.8	5.00×10^{-3}	1.47×10^{-3}	3.05×10^{-4}	0.9916
		378.9	2.75×10^{-3}	8.09×10^{-4}	9.88×10^{-5}	0.9961
	1.7	394.8	1.06×10^{-2}	3.25×10^{-3}	7.43×10^{-4}	0.9903
		392.4	5.00×10^{-3}	2.19×10^{-3}	4.57×10^{-4}	0.9989
		390.6	1.25×10^{-3}	8.93×10^{-4}	1.04×10^{-4}	0.9476
		390.0	7.89×10^{-4}	6.49×10^{-4}	6.37×10^{-5}	0.9250
	4.2	408.2	1.69×10^{-2}	9.19×10^{-3}	1.55×10^{-3}	0.9686
		406.5	7.35×10^{-3}	3.59×10^{-3}	5.85×10^{-4}	0.9941
		404.5	2.85×10^{-3}	1.75×10^{-3}	2.52×10^{-4}	0.9746
		402.7	7.98×10^{-4}	---	-----	------
	7.5	419.6	1.11×10^{-2}	9.78×10^{-3}	1.79×10^{-3}	0.9462
		415.3	1.43×10^{-3}	2.26×10^{-3}	5.69×10^{-4}	0.9779
		413.5	9.09×10^{-4}	8.02×10^{-4}	2.76×10^{-4}	0.9811
IP-SR-PBR(2)	0.8	386.7	------	7.68×10^{-3}	1.60×10^{-3}	0.9872
		384.7	------	5.07×10^{-3}	9.84×10^{-4}	0.9989
		382.8	9.43×10^{-3}	3.35×10^{-3}	5.00×10^{-4}	0.9984
		380.8	5.95×10^{-3}	2.32×10^{-3}	3.54×10^{-4}	0.9993
		378.9	2.75×10^{-3}	1.12×10^{-3}	1.16×10^{-4}	0.9940
	1.7	394.8	1.14×10^{-2}	4.53×10^{-3}	8.91×10^{-4}	0.9935
		392.4	5.00×10^{-3}	1.78×10^{-3}	7.04×10^{-4}	0.9959
		390.6	1.25×10^{-3}	1.27×10^{-3}	1.48×10^{-4}	0.9734
		390.0	7.89×10^{-4}	6.49×10^{-4}	6.82×10^{-5}	0.9806
	4.2	408.2	1.69×10^{-2}	7.76×10^{-3}	1.89×10^{-3}	0.9872
		406.5	7.35×10^{-3}	3.77×10^{-3}	7.72×10^{-4}	0.9819
		404.5	3.40×10^{-3}	1.75×10^{-3}	3.67×10^{-4}	0.9799
		402.7	7.98×10^{-4}	------	------	------
	7.5	419.6	1.11×10^{-2}	9.79×10^{-3}	3.23×10^{-3}	0.9823
		415.3	1.43×10^{-3}	2.47×10^{-3}	7.30×10^{-4}	0.9895
		413.5	9.09×10^{-4}	9.95×10^{-4}	3.38×10^{-4}	0.9851

${ }^{\text {a }}$ Determination coefficient of the nonlinear least-squares analysis.

Figure S16. Arrhenius plots of the individual physicogeometrical reaction steps for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CCDH to form $\mathrm{CC}-\mathrm{MH})$ at varying $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) SR and (b) PBR(2).

Figure S17. Arrhenius plots of the individual physicogeometrical reaction steps for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at varying $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values: (a) IP, (b) SR, and (c) $\operatorname{PBR}(2)$.

Supplementary Information

Table S4. Apparent Arrhenius parameters of the component physico-geometrical processes involved in the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH at different $p\left(\mathrm{H}_{2} \mathrm{O}\right)$ values, as determined based on the $\mathrm{SR}-\mathrm{PBR}(2)$ and IP-SR-PBR(2) models

Reaction step i	Process	$p\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{kPa}$	$E_{\mathrm{a}, i} / \mathrm{kJ} \mathrm{mol}^{-1}$	$\ln \left(A_{i} / \mathrm{s}^{-1}\right)$	$-\gamma^{\text {a }}$
1	SR	0.8	123.4 ± 10.5	36.3 ± 3.6	0.9858
		1.7	269.3 ± 20.1	82.2 ± 6.6	0.9918
		4.1	283.2 ± 28.9	82.9 ± 9.1	0.9948
		7.4	291.7 ± 26.9	82.5 ± 8.1	0.9875
	PBR(2)	0.8	213.6 ± 12.2	64.5 ± 4.2	0.9935
		1.7	236.8 ± 5.9	70.1 ± 1.9	0.9991
		4.1	258.9 ± 33.4	74.1 ± 10.5	0.9918
		7.4	345.2 ± 25.9	97.1 ± 7.8	0.9916
2	IP	0.8	384.9 ± 64.6	116.3 ± 20.4	0.9862
		1.7	724.9 ± 96.4	216.5 ± 29.6	0.9828
		4.2	733.3 ± 152.4	227.0 ± 45.3	0.9890
		7.5	607.9 ± 73.2	169.7 ± 21.2	0.9928
	SR	0.8	290.6 ± 24.1	85.6 ± 7.6	0.9898
		1.7	469.3 ± 84.9	137.6 ± 26.1	0.9688
		4.2	558.4 ± 19.7	159.7 ± 5.8	0.9994
		7.5	525.0 ± 60.7	145.9 ± 17.5	0.9934
	PBR(2)	0.8	393.3 ± 43.4	116.0 ± 13.6	0.9822
		1.7	681.3 ± 205.4	200.9 ± 63.0	0.9199
		4.2	611.7 ± 65.2	173.9 ± 19.3	0.9944
		7.5	526.0 ± 27.7	145.1 ± 8.0	0.9986

Figure S18. Apparent linear correlations observed between $\ln A_{i}$ and $E_{\mathrm{a}, i}$ values determined for the individual physico-geometrical reaction processes of the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH based on SR-PBR(3) and IP-SR-PBR(3) models, respectively: (a) first and (b) second reaction steps.

[^0]: * Corresponding author. E-mail: nkoga@hiroshima-u.ac.jp

