Water vapor effect on the physico-geometrical reaction pathway and kinetics of the multistep thermal dehydration of calcium chloride dihydrate

Kazuki Kato, Mito Hotta, and Nobuyoshi Koga*

Department of Science Education, Division of Educational Sciences, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

Contents

S1. Water vapor effect on the reaction pathways3 Weibull function
Figure S1. MDA results for the thermal dehydration process of CC-DH ($m_0 = 3.01 \pm 0.04$ mg) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N ₂ with $p(H_2O) = 0.8$ kPa
$(q_v = 200 \text{ cm}^3 \text{ min}^3)$: (a) typical measurement scheme for the rehydration process and (b) 1G curves at various $p(\text{H}_2\text{O})$ values.
S2. Kinetics of the component reaction steps at different $p(H_2O)$ values
Figure S8. Kinetic curves for the second reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under linear nonisothermal conditions at different β values in a stream of wet N ₂ with different p (H ₂ O) values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa
Figure S9. Kinetic curves for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal and linear nonisothermal conditions at various $p(H_2O)$ values, represented in the 3D kinetic coordinate of T^{-1} , α , and $\ln(d\alpha/dt)$: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa

^{*} Corresponding author. E-mail: nkoga@hiroshima-u.ac.jp

Figure S13. Apparent linear correlations observed between $\ln A_i$ and $E_{a,i}$ values established for the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH using the conventional Friedman plot and master plot methods......s11 S3. Kinetic modeling based on IP–SR–PBR(n) modelss11

 Table S1. Differential kinetic equations of IP–SR–PBR(n) models

Figure S14. Typical fitting results using SR–PBR(2) model for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal conditions at various $p(H_2O)$ values: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.....s12 Figure S15. Typical fitting results using IP-SR-PBR(2) model for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form Table S2. Optimized rate constants of the SR–PBR(n) models for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at **Table S3.** Optimized rate constants of the IP–SR–PBR(n) models for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at various temperatures and p(H₂O) values......s14 Figure S16. Arrhenius plots of the individual physico-geometrical reaction steps for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at varying *p*(H₂O) values: (a) SR and (b) PBR(2).....s15 Figure S17. Arrhenius plots of the individual physico-geometrical reaction steps for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at varying $p(H_2O)$ values: (a) IP, (b) SR, and (c) PBR(2)......s15 Table S4. Apparent Arrhenius parameters of the component physico-geometrical processes involved in the twostep thermal dehydration process of CC-DH to form CC-AH via CC-MH at different $p(H_2O)$ values, as determined based on the SR-PBR(2) and IP-SR-PBR(2) models.....s16 Figure S18. Apparent linear correlations observed between $\ln A_i$ and $E_{a,i}$ values determined for the individual physico-geometrical reaction processes of the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH based on SR-PBR(3) and IP-SR-PBR(3) models, respectively: (a) first

S1. Water vapor effect on the reaction pathway

Weibull function

$$F(t) = a_0 \left(\frac{a_3 - 1}{a_3}\right)^{\frac{1 - a_3}{a_3}} \left\{ \frac{t - a_1}{a_2} + \left(\frac{a_3 - 1}{a_3}\right)^{\frac{1}{a_3}} \right\}^{a_3 - 1} \exp\left[-\left\{ \frac{t - a_1}{a_2} + \left(\frac{a_3 - 1}{a_3}\right)^{\frac{1}{a_3}} \right\}^{a_3} + \frac{a_3 - 1}{a_3} \right]$$
(S1)

where a_0 is the amplitude, a_1 is the center, a_2 is the width, and a_3 is the shape parameters.

Figure S1. MDA results for the thermal dehydration process of CC-DH ($m_0 = 3.01 \pm 0.04$ mg) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N₂ with $p(H_2O) = 0.8$ kPa.

Figure S2. MDA results for the thermal dehydration process of CC-DH ($m_0 = 3.02 \pm 0.06$ mg) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N₂ with $p(H_2O) = 1.8$ kPa.

Figure S3. MDA results for the thermal dehydration process of CC-DH ($m_0 = 3.03 \pm 0.05$ mg) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N₂ with $p(H_2O) = 4.2$ kPa.

Figure S4. MDA results for the thermal dehydration process of CC-DH ($m_0 = 3.02 \pm 0.04$ mg) to form CC-AH under linear nonisothermal conditions at various β values in a stream of wet N₂ with $p(H_2O) = 7.5$ kPa.

Figure S5. TG curves for hydration process of CC-AH under linear cooling at 1 K min⁻¹ in a stream of wet N₂ ($q_v = 200 \text{ cm}^3 \text{ min}^{-1}$): (a) typical measurement scheme for the rehydration process and (b) TG curves at various $p(\text{H}_2\text{O})$ values. Measurements were performed using a humidity-controlled TG system constructed by coupling TG–DTA (TG8122, Rigaku) and a humidity controller (me-40DP-2PHW, Micro Equipment Co.). Initially, the CC-DH sample (300–500 µm, m_0 : approximately 3.0 mg) was heated to 473 K at a β of 5 K min⁻¹ in a stream of dry N₂ and subsequently cooled to a temperature of 423–408 K at a cooling rate of 5 K min⁻¹.

S2. Kinetics of the component reaction steps at different $p(H_2O)$ values

Figure S6. An example of TG–DTG measurement conducted for the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH recorded by heating the sample ($m_0 = 3.084$ mg) according to two-step isothermal heating program in a stream of wet N₂ with $p(H_2O) = 1.8$ kPa.

Figure S7. Kinetic curves for the first reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under linear nonisothermal conditions at various β values in a stream of wet N₂ with different $p(H_2O)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S8. Kinetic curves for the second reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under linear nonisothermal conditions at different β values in a stream of wet N₂ with different $p(H_2O)$ values, extracted from the overall two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH using MDA: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S9. Kinetic curves for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal and linear nonisothermal conditions at various $p(H_2O)$ values, represented in the 3D kinetic coordinate of T^{-1} , α_1 , and $\ln(d\alpha_1/dt)$: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S10. Kinetic curves for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal and linear nonisothermal conditions at various $p(H_2O)$ values, represented in the 3D kinetic coordinate of T^{-1} , α_2 , and $\ln(d\alpha_2/dt)$: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S11. Friedman plots at different α_1 for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various $p(H_2O)$ values: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S12. Friedman plots at different α_2 for the second reaction step of the two-step thermal dehydration of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at various $p(H_2O)$ values: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S13. Apparent linear correlations observed between $\ln A_i$ and $E_{a,i}$ values established for the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH using the conventional Friedman plot and master plot methods.

S3. Kinetic modeling based on IP–SR–PBR(*n*) models

Table S1. Differential	kinetic equations o	of IP–SR–PBR (n)	models
------------------------	---------------------	--------------------	--------

$$\begin{array}{l} n & \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \\ \hline n & \frac{\mathrm{d}\alpha}{\mathrm{d}t} = \\ \hline 1 & \mathrm{a}) \ t - 1/k_{\mathrm{IP}} \leq 1/k_{\mathrm{PBR}(1)}: \\ & k_{\mathrm{PBR}(1)} \left[1 - \exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right) \right] \\ \mathrm{b}) \ t - 1/k_{\mathrm{IP}} \geq 1/k_{\mathrm{PBR}(1)}: \\ & k_{\mathrm{PBR}(1)} \exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right) \left[\exp\left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(1)}}\right) - 1 \right] \\ \hline 2 & \mathrm{a}) \ t - 1/k_{\mathrm{IP}} \leq 1/k_{\mathrm{PBR}(2)}: \\ & -2k_{\mathrm{PBR}(2)} \left[\left(1 + \frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}}\right) \exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right) + k_{\mathrm{PBR}(2)}\left(t - \frac{1}{k_{\mathrm{IP}}}\right) - \left(1 + \frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}}\right) \right] \\ & \mathrm{b}) \ t - 1/k_{\mathrm{IP}} \geq 1/k_{\mathrm{PBR}(2)}: \\ & -2k_{\mathrm{PBR}(2)} \exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right) \left[1 + \frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}} - \frac{k_{\mathrm{PBR}(2)}}{k_{\mathrm{SR}}} \exp\left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(2)}}\right) \right] \\ \hline 3 & \mathrm{a}) \ t - 1/k_{\mathrm{IP}} \leq 1/k_{\mathrm{PBR}(3)}: \\ & -3k_{\mathrm{PBR}(3)} \left[\left(1 + 2\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}} + 2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^2\right) \exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right) - \left(-k_{\mathrm{PBR}(3)}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right)^2 \\ & + 2k_{\mathrm{PBR}(3)}\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}} + 1\right)\left(t - \frac{1}{k_{\mathrm{IP}}}\right) - \left(1 + 2\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}} + 2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^2 \right) \right] \\ & \mathrm{b}) \ t - 1/k_{\mathrm{IP}} \geq 1/k_{\mathrm{PBR}(3)}: \\ & 3k_{\mathrm{PBR}(3)}\exp\left(-k_{\mathrm{SR}}\left(t - \frac{1}{k_{\mathrm{IP}}}\right)\right)\left[2\left(\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right)^2 \left(\exp\left(\frac{k_{\mathrm{SR}}}{k_{\mathrm{PBR}(3)}}\right) - 1\right) - \left(1 + 2\frac{k_{\mathrm{PBR}(3)}}{k_{\mathrm{SR}}}\right) \right] \end{array}$$

Figure S14. Typical fitting results using SR–PBR(2) model for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) under isothermal conditions at various $p(H_2O)$ values: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Figure S15. Typical fitting results using IP–SR–PBR(2) model for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) under isothermal conditions at various $p(H_2O)$ values: (a) 0.8, (b) 1.8, (c) 4.2, and (d) 7.5 kPa.

Table S2. Optimized rate constants of the SR–PBR(n) models for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at various temperatures and $p(H_2O)$ values

model	p(H ₂ O)/kPa	<i>T</i> /K	Rate constant			D 2 a
model			$k_{\rm IP,1}/{\rm s}^{-1}$	$k_{\rm SR,1}/{\rm s}^{-1}$	$k_{\text{PBR}(n),1}/s^{-1}$	K ² , "
SR-PBR(3)	0.8	356.7		3.75×10^{-3}	3.67×10^{-4}	0.9922
		354.6		3.05×10^{-3}	2.90×10^{-4}	0.9948
		352.5		1.86×10^{-3}	1.82×10^{-4}	0.9946
		350.3		1.51×10^{-3}	1.30×10^{-4}	0.9848
		347.8		9.65×10^{-4}	6.24×10^{-5}	0.9822
		345.3		7.39×10^{-4}	3.70×10^{-5}	0.9789
	1.7	368.8		3.62×10^{-3}	5.68×10^{-4}	0.9965
		366.5		1.74×10^{-3}	4.02×10^{-4}	0.9910
		362.4		6.02×10^{-4}	1.50×10^{-4}	0.9741
		361.4		5.88×10^{-4}	1.41×10^{-4}	0.9903
		359.4		3.68×10^{-4}	7.12×10^{-5}	0.9726
	4.1	387.8		5.83×10^{-3}	1.48×10^{-3}	0.9353
		382.4		2.22×10^{-3}	5.65×10^{-4}	0.9690
		378.5		7.26×10^{-4}	1.91×10^{-4}	0.9211
	7.4	402.3		8.44×10^{-3}	2.05×10^{-3}	0.9427
		400.3		4.07×10^{-3}	1.00×10^{-3}	0.9860
		398.0		2.19×10^{-3}	5.94×10^{-4}	0.9960
		395.5		2.21×10^{-3}	3.57×10^{-4}	0.9955
		392.7		7.54×10^{-4}	1.51×10^{-4}	0.9957
SR-PBR(2)	0.8	356.7		4.55×10^{-3}	4.98×10^{-4}	0.9921
		354.6		4.32×10^{-3}	3.63×10^{-4}	0.9963
		352.5		2.61×10^{-3}	2.28×10^{-4}	0.9964
		350.3		2.34×10^{-3}	1.74×10^{-4}	0.9941
		347.8		1.61×10^{-3}	$8.00 imes 10^{-5}$	0.9753
		345.3		1.23×10^{-3}	4.77×10^{-5}	0.9876
	1.7	368.8		3.59×10^{-3}	7.72×10^{-4}	0.9944
		366.5		1.99×10^{-3}	5.01×10^{-4}	0.9975
		362.4		6.65×10^{-4}	1.91×10^{-4}	0.9864
		361.4		7.18×10^{-4}	1.70×10^{-4}	0.9943
		359.4		3.30×10^{-4}	1.03×10^{-4}	0.9867
	4.1	387.8		6.82×10^{-3}	1.83×10^{-3}	0.9869
		382.4		2.39×10^{-3}	7.32×10^{-4}	0.9831
		378.5		7.80×10^{-4}	2.51×10^{-4}	0.9423
	7.4	402.3		9.93×10^{-3}	2.64×10^{-3}	0.9632
		400.3		5.43×10^{-3}	1.17×10^{-3}	0.9930
		398.0		3.26×10^{-3}	7.84×10^{-4}	0.9711
		395.5		2.53×10^{-3}	4.55×10^{-4}	0.9964
		392.7		1.00×10^{-3}	$1.78 imes 10^{-4}$	0.9959
^a Determination coefficient of the nonlinear least-squares analysis						

Table S3. Optimized rate constants of the IP–SR–PBR(n) models for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at various temperatures and $p(H_2O)$ values

model n(II-O)/l/De		. T / V	Rate constant			D 2. a
mouer	$p(\Pi_2 O)/\kappa r a$		$k_{\rm IP,2}/{\rm s}^{-1}$	$k_{\rm SR,2}/{\rm s}^{-1}$	$k_{\text{PBR}(n),2}/\text{s}^{-1}$	K '
IP-SR-	0.8	386.7		6.30×10^{-3}	1.29×10^{-3}	0.9792
PBR(3)		384.7		3.89×10^{-3}	8.37×10^{-4}	0.9948
		382.8	9.43×10^{-3}	2.38×10^{-3}	4.30×10^{-4}	0.9942
		380.8	5.00×10^{-3}	1.47×10^{-3}	3.05×10^{-4}	0.9916
		378.9	2.75×10^{-3}	8.09×10^{-4}	9.88×10^{-5}	0.9961
	1.7	394.8	1.06×10^{-2}	3.25×10^{-3}	7.43×10^{-4}	0.9903
		392.4	5.00×10^{-3}	2.19×10^{-3}	4.57×10^{-4}	0.9989
		390.6	1.25×10^{-3}	8.93×10^{-4}	1.04×10^{-4}	0.9476
		390.0	7.89×10^{-4}	6.49×10^{-4}	6.37×10^{-5}	0.9250
	4.2	408.2	1.69×10^{-2}	9.19×10^{-3}	1.55×10^{-3}	0.9686
		406.5	7.35×10^{-3}	3.59×10^{-3}	5.85×10^{-4}	0.9941
		404.5	2.85×10^{-3}	1.75×10^{-3}	2.52×10^{-4}	0.9746
		402.7	7.98×10^{-4}			
	7.5	419.6	1.11×10^{-2}	9.78×10^{-3}	1.79×10^{-3}	0.9462
		415.3	1.43×10^{-3}	2.26×10^{-3}	5.69×10^{-4}	0.9779
		413.5	9.09×10^{-4}	8.02×10^{-4}	2.76×10^{-4}	0.9811
IP-SR-	0.8	386.7		7.68×10^{-3}	1.60×10^{-3}	0.9872
PBR(2)		384.7		5.07×10^{-3}	9.84×10^{-4}	0.9989
		382.8	9.43×10^{-3}	3.35×10^{-3}	5.00×10^{-4}	0.9984
		380.8	5.95×10^{-3}	2.32×10^{-3}	3.54×10^{-4}	0.9993
		378.9	2.75×10^{-3}	1.12×10^{-3}	1.16×10^{-4}	0.9940
	1.7	394.8	1.14×10^{-2}	4.53×10^{-3}	8.91×10^{-4}	0.9935
		392.4	5.00×10^{-3}	1.78×10^{-3}	7.04×10^{-4}	0.9959
		390.6	1.25×10^{-3}	1.27×10^{-3}	1.48×10^{-4}	0.9734
		390.0	7.89×10^{-4}	6.49×10^{-4}	6.82×10^{-5}	0.9806
	4.2	408.2	1.69×10^{-2}	7.76×10^{-3}	1.89×10^{-3}	0.9872
		406.5	7.35×10^{-3}	3.77×10^{-3}	7.72×10^{-4}	0.9819
		404.5	3.40×10^{-3}	1.75×10^{-3}	3.67×10^{-4}	0.9799
		402.7	7.98×10^{-4}		2	
	7.5	419.6	1.11×10^{-2}	9.79×10^{-3}	3.23×10^{-3}	0.9823
		415.3	1.43×10^{-3}	2.47×10^{-3}	7.30×10^{-4}	0.9895
		413.5	9.09×10^{-4}	9.95×10^{-4}	3.38×10^{-4}	0.9851

^a Determination coefficient of the nonlinear least-squares analysis.

Figure S16. Arrhenius plots of the individual physicogeometrical reaction steps for the first reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-DH to form CC-MH) at varying $p(H_2O)$ values: (a) SR and (b) PBR(2).

Figure S17. Arrhenius plots of the individual physicogeometrical reaction steps for the second reaction step of the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH (thermal dehydration of CC-MH to form CC-AH) at varying $p(H_2O)$ values: (a) IP, (b) SR, and (c) PBR(2).

Table S4. Apparent Arrhenius parameters of the component physico-geometrical processes involved in the two-step thermal dehydration process of CC-DH to form CC-AH via CC-MH at different $p(H_2O)$ values, as determined based on the SR–PBR(2) and IP–SR–PBR(2) models

Reaction step <i>i</i>	Process	p(H ₂ O)/kPa	E _{a,i} ∕kJ mol ^{−1}	$\ln(A_i/s^{-1})$	—γ, ^a
1	SR	0.8	123.4 ± 10.5	36.3 ± 3.6	0.9858
		1.7	269.3 ± 20.1	82.2 ± 6.6	0.9918
		4.1	283.2 ± 28.9	82.9 ± 9.1	0.9948
PBR		7.4	291.7 ± 26.9	82.5 ± 8.1	0.9875
	PBR(2)	0.8	213.6 ± 12.2	64.5 ± 4.2	0.9935
		1.7	236.8 ± 5.9	70.1 ± 1.9	0.9991
		4.1	258.9 ± 33.4	74.1 ± 10.5	0.9918
		7.4	345.2 ± 25.9	97.1 ± 7.8	0.9916
2	IP	0.8	384.9 ± 64.6	116.3 ± 20.4	0.9862
		1.7	724.9 ± 96.4	216.5 ± 29.6	0.9828
		4.2	733.3 ± 152.4	227.0 ± 45.3	0.9890
		7.5	607.9 ± 73.2	169.7 ± 21.2	0.9928
	SR	0.8	290.6 ± 24.1	85.6 ± 7.6	0.9898
		1.7	469.3 ± 84.9	137.6 ± 26.1	0.9688
		4.2	558.4 ± 19.7	159.7 ± 5.8	0.9994
		7.5	525.0 ± 60.7	145.9 ± 17.5	0.9934
	PBR(2)	0.8	393.3 ± 43.4	116.0 ± 13.6	0.9822
		1.7	681.3 ± 205.4	200.9 ± 63.0	0.9199
		4.2	611.7 ± 65.2	173.9 ± 19.3	0.9944
		7.5	526.0 ± 27.7	145.1 ± 8.0	0.9986

^a Correlation coefficient of the linear regression analysis for the Arrhenius plot.

Figure S18. Apparent linear correlations observed between $\ln A_i$ and $E_{a,i}$ values determined for the individual physico-geometrical reaction processes of the first and second reaction steps of the thermal dehydration process of CC-DH to form CC-AH via CC-MH based on SR–PBR(3) and IP–SR–PBR(3) models, respectively: (a) first and (b) second reaction steps.