Supporting Information

Iodine capture of two-dimensional layered uranyl-organic framework: A

combined DFT and AIMD study

Mingyang Shi^a, Kunyang Cheng^b, Xiujuan Cheng^b, Xuying Zhou^b, Gang Jiang^b, Jiguang

Du^{a,*}

^a College of Physics, Sichuan University, Chengdu 610064, China

^b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

Table of contents

Table S1	S2
Figure S1	S3
Table S2	S4
Table S3	S5
Table S4	S7
Table S5	S9
Table S6	S11
Table S7	S12
Table S8	S14
Table S9	
Figure S2	S15
Figure S3	S16

^{*} corresponding author:

E-mail: dujg@scu.edu.cn

atom	x	У	Z
U	43.10384670	15.70164184	3.75622923
0	43.35867208	15.73579128	5.53657113
0	43.00306901	15.64260441	1.97669866
0	42.93292120	13.18676797	3.81366768
0	45.01568408	13.92742021	3.76606752
С	44.16337345	12.96789627	3.82731891
Н	44.54717583	11.91444945	3.89280798
0	41.19615404	17.14051210	3.91312211
0	40.83743079	14.96906041	4.00837040
N	32.51036804	17.17116051	4.69329522
N	33.72478122	15.10231076	4.67200271
N	31.33581361	15.08833412	4.89782261
N	30.16616443	17.05053148	4.91644438
Н	29.41615264	16.36341107	5.01691556
N	34.78478079	17.20070538	4.48085165
Н	34.56170040	18.19821762	4.45914932
N	32.62133611	13.11164621	4.86629111
Н	33.59227514	12.80174741	4.78740750
Н	28.38900496	22.07506314	4.84460348
C	28.77156057	21.04390616	4.85784164
C	28.37741543	18.64889588	5.00611690
Н	27.67877228	17.80277845	5.10972513
C	30.65319193	19.48435079	4.75774638
Н	31.72594639	19.28257756	4.66834084
С	27.88915417	19.95929805	4.98974038
Н	26.80608574	20.13234173	5.08110703
C	30.14713761	20.79159350	4.74308460
Н	30.85137979	21.63143904	4.63876969
C	29.76495965	18.39333687	4.89049455
C	31.39374882	16.44429461	4.83024672
C	32.52458042	14.47871206	4.81347777
C	33.64997591	16.43609245	4.61974739
C	31.66504207	12.09629967	5.00538014
C	31.25866551	9.68951618	5.15182740
Н	31.65458679	8.66262827	5.15761729
C	30.27670839	12.32671500	5.13297614
Н	29.91119821	13.35912091	5.12346497
С	32.14341479	10.76403717	5.01655889
Н	33.22496717	10.57709342	4.91701496

Table S1. The Cartesian coordinates of optimized structures for cluster model atPBE-D3 level of theory.

С	29.40369584	11.23815965	5.26775318
Н	28.32454547	11.43301515	5.36626891
С	29.87871248	9.91783298	5.27885294
Н	29.18170062	9.07362104	5.38525040
С	36.63990320	15.55197569	4.36964959
Н	35.93279053	14.72083214	4.46024606
С	36.13878458	16.87604126	4.37112388
С	38.41668476	17.72929261	4.13840526
Н	39.12646867	18.56412650	4.04643252
С	38.91635490	16.41070503	4.13738920
С	38.01470287	15.33456709	4.25314104
Н	38.41884892	14.31152459	4.24917472
С	37.04767132	17.95902709	4.25352629
Н	36.66055232	18.99083497	4.25344173
С	40.37227903	16.16338941	4.01515516
0	43.74513544	18.13845229	3.60529567
0	45.47863261	16.76709126	3.64372713
Н	45.68298800	18.82794573	3.62274732
С	44.98056455	17.95156871	3.62443342
N	46.94883686	15.12707000	5.02263688
Н	46.31772759	14.38912746	4.56030683
Н	46.57617963	15.98436840	4.48960267
С	48.37398555	14.88265155	4.74034005
Н	48.98828437	15.71705407	5.13032350
Н	48.70098561	13.93993552	5.21998724
Н	48.51730744	14.80421451	3.64676791
C	46.58021920	15.25119926	6.44984385
Н	45.48935771	15.43277812	6.51063363
Н	46.83640911	14.31816400	6.98764004
Н	47.12755972	16.09745253	6.90781400

Figure S1. Optimized structures of I_2 molecule adsorbed at different sites on cluster model at PBE-D3 level of theory.

atom	x	v	Z
U	43.09268636	15.68690852	3.67718042
0	43.27521232	15.74053196	5.46620635
0	43.06421179	15.60859877	1.89571347
0	42.92197093	13.17084269	3.75593033
0	45.00355044	13.91606230	3.78207379
С	44.15097519	12.95566618	3.82587993
Н	44.53356698	11.90453260	3.92727365
0	41.17794592	17.12236972	3.74456090
0	40.82273578	14.95094640	3.85042047
N	32.48864294	17.13013239	4.49543610
N	33.71857605	15.07150824	4.52815349
N	31.33943165	15.05161609	4.84010268
N	30.15834810	17.00740290	4.83179202
Н	29.41931423	16.32286165	5.00443297
N	34.75846947	17.16772805	4.23095560
Н	34.53365602	18.16636540	4.18797264
N	32.63771041	13.08279843	4.83507214
Н	33.60772474	12.77647655	4.73405721
Н	28.39578469	22.03732974	4.79079258
С	28.77382768	21.00440974	4.79275622
С	28.39026951	18.61737719	5.06138007
Н	27.70517972	17.78011958	5.27226588
С	30.62554383	19.42926610	4.53179164
Н	31.68110313	19.21907780	4.33004014
С	27.90761287	19.93021871	5.05503848
Н	26.84185741	20.11370443	5.25973119
С	30.12697608	20.73891194	4.53323696
Н	30.82263823	21.56744692	4.32787368
С	29.75583935	18.34965367	4.80258060
С	31.38494393	16.40395109	4.71182625
С	32.52901453	14.44687482	4.73396258
C	33.63320283	16.40233739	4.42263059
C	31.69449939	12.06798848	5.04549961
C	31.31053332	9.66614637	5.29810728
Н	31.71381876	8.64257380	5.32929204
C	30.30963328	12.29480729	5.21246782
Н	29.93690963	13.32405420	5.17583581
C	32.18232822	10.73978702	5.09094843
Н	33.26108323	10.55547243	4.96086933

Table S2. The Cartesian coordinates of optimized structures of I_2 molecule adsorbed at site 1 on cluster model at PBE-D3 level of theory.

С	29.44969088	11.20717300	5.41923414
Н	28.37318479	11.39942361	5.54752882
С	29.93418756	9.89100428	5.46444442
Н	29.24738704	9.04741898	5.62725130
С	36.62007045	15.52360863	4.15061651
Н	35.91513504	14.69036573	4.23753259
С	36.11465084	16.84610531	4.14032490
С	38.39241380	17.70538358	3.93264130
Н	39.10051931	18.54247043	3.84856097
С	38.89656045	16.38832141	3.94288101
С	37.99678345	15.30987294	4.05195394
Н	38.40396447	14.28805701	4.05703421
С	37.02161886	17.93186175	4.03001198
Н	36.62928015	18.96116032	4.02949860
С	40.35402872	16.14446660	3.84148567
0	43.73853047	18.12175978	3.52583344
0	45.47055963	16.75335773	3.65130673
Н	45.67373186	18.81374642	3.60751832
С	44.97239807	17.93655156	3.59522447
Ν	46.88024384	15.12805283	5.10888267
Н	46.26796358	14.38413942	4.63006272
Н	46.52891078	15.97838667	4.55066679
С	48.31564411	14.88221899	4.88748145
Н	48.91313256	15.71981777	5.29637069
Н	48.62287463	13.94327610	5.38719829
Н	48.50399511	14.79593186	3.80134365
С	46.45409589	15.26841100	6.51848404
Н	45.36087395	15.44508613	6.53299866
Н	46.69254410	14.34348335	7.07802650
Н	46.97885869	16.12297748	6.98734677
Ι	33.62425104	19.46966824	7.34689388
Ι	34.24001552	21.00329636	5.19822305

Table S3. The Cartesian coordinates of optimized structures of I_2 molecule adsorbed at site 2 on cluster model at PBE-D3 level of theory.

atom	x	У	Z
U	43.10066403	15.66784004	3.78000255
0	43.35109249	15.67385847	5.56156344
0	43.00338735	15.63721913	1.99933395
0	42.93458011	13.15032719	3.78992492
0	45.01585239	13.89624350	3.77071734
С	44.16523989	12.93428378	3.81469601
Н	44.55084819	11.88109139	3.87452099

0	41.19199292	17.09789940	3.96013866
0	40.83748182	14.92457348	4.01935726
N	32.50959118	17.12628804	4.74041074
N	33.71803552	15.05427728	4.69298395
N	31.32838092	15.04440412	4.91289013
N	30.16450395	17.01005376	4.95300420
Н	29.41193554	16.32428162	5.04275563
N	34.78455074	17.15184469	4.53502422
Н	34.56613953	18.15069695	4.52847465
N	32.60848130	13.06456543	4.85875419
Н	33.57870701	12.75312530	4.77712981
Н	28.40571241	22.04159378	4.93538178
С	28.78442753	21.00893098	4.93778194
С	28.38135342	18.61381706	5.05815056
Н	27.67945902	17.76910654	5.15077517
С	30.66062405	19.44376808	4.82355021
Н	31.73283271	19.23921720	4.73378115
С	27.89785953	19.92609734	5.05574357
Н	26.81523894	20.10203943	5.14701411
С	30.15930939	20.75291702	4.82272414
Н	30.86697307	21.59113607	4.72900300
С	29.76820260	18.35447488	4.94221466
С	31.39066345	16.40103693	4.86360384
С	32.51579484	14.43271102	4.82329299
С	33.64761832	16.38919905	4.65958926
С	31.64900454	12.05032383	4.98142283
С	31.23499630	9.64290672	5.09360902
Н	31.62786696	8.61485070	5.08595233
С	30.26103586	12.28306310	5.10942169
H	29.89876490	13.31666137	5.11348926
С	32.12325616	10.71651485	4.97508106
H	33.20445559	10.52771258	4.87517473
C	29.38449048	11.19539383	5.22726895
H	28.30572899	11.39218641	5.32630700
С	29.85546352	9.87357487	5.22100735
Н	29.15571379	9.03007206	5.31429179
С	36.63767673	15.50056797	4.40148877
Н	35.92999631	14.66857537	4.47923242
С	36.13808522	16.82516963	4.42241252
C	38.41573444	17.68009959	4.20355870
Н	39.12295222	18.51848660	4.12395938
C	38.91456945	16.36157469	4.18084317
C	38.01236222	15.28399931	4.28077325

Н	38.41569078	14.26082764	4.26031105
С	37.04726198	17.90865267	4.32204643
Н	36.66547811	18.94232557	4.33827235
С	40.36957984	16.11788028	4.04932408
0	43.73913721	18.10632555	3.66172190
0	45.47573887	16.73822810	3.69112683
Н	45.67547907	18.79941852	3.69046058
С	44.97483308	17.92164768	3.68199472
N	46.94262029	15.08000961	5.05096167
Н	46.31337853	14.34854452	4.57508607
Н	46.57166609	15.94474597	4.52892676
С	48.36912879	14.84050112	4.77230001
Н	48.98139258	15.66712514	5.18161367
Н	48.69319945	13.88874832	5.23581307
Н	48.51877196	14.78290480	3.67826435
С	46.56706148	15.18261846	6.47809354
Н	45.47560450	15.36148749	6.53643996
Н	46.82188345	14.24207420	7.00334584
Н	47.11109962	16.02266617	6.95116301
Ι	38.15989002	21.85989609	4.79674907
Ι	38.21743827	21.26184487	2.15255635

Table S4. The Cartesian coordinates of optimized structures of I_2 molecule adsorbed at site 3 on cluster model at PBE-D3 level of theory.

atom	x	У	Z
U	43.11602729	15.66606439	3.73670966
0	43.34802210	15.65007718	5.52105863
0	43.03769972	15.65912226	1.95462026
0	42.94205253	13.14887113	3.70961192
0	45.02454389	13.89235326	3.71924257
С	44.17220786	12.93089577	3.74003380
Н	44.55615822	11.87636297	3.78419265
0	41.21294043	17.09991092	3.90883685
0	40.84627036	14.92912423	3.95017671
N	32.52706446	17.15251833	4.68368766
N	33.73657240	15.08074041	4.66804341
N	31.34862912	15.07361019	4.90478958
N	30.18323802	17.03848535	4.91338586
Н	29.43201053	16.35376366	5.02081908
N	34.80092435	17.17574108	4.46464520
Н	34.58100663	18.17400923	4.44448827
N	32.62987272	13.09397748	4.88219694
Н	33.59985452	12.78155721	4.80146437

Н	28.41653901	22.06601660	4.80322105
C	28.79685298	21.03416570	4.82443444
С	28.39814951	18.64140228	4.99492911
Н	27.69805972	17.79769006	5.10799666
С	30.67492968	19.46982029	4.73249555
Н	31.74699508	19.26500031	4.64173287
С	27.91256731	19.95263773	4.96849483
Н	26.83014252	20.12879582	5.06154298
С	30.17155582	20.77795140	4.70784971
Н	30.87731212	21.61528643	4.59406954
С	29.78480531	18.38189317	4.87737089
С	31.40928455	16.42899754	4.82797396
С	32.53574490	14.46091357	4.81952580
С	33.66481217	16.41454184	4.60973645
С	31.67233372	12.08192958	5.03538543
С	31.26172544	9.67741751	5.20591006
Н	31.65554989	8.64978422	5.21876547
С	30.28520121	12.31642646	5.16879176
Н	29.92187179	13.34951426	5.15203941
C	32.14793153	10.74877148	5.05579418
Н	33.22851212	10.55863952	4.95180599
C	29.41071135	11.23101590	5.31846282
Н	28.33256384	11.42910700	5.42144569
С	29.88301028	9.90982117	5.33884345
Н	29.18488034	9.06809813	5.45699535
С	36.65042111	15.52178989	4.33444582
Н	35.94098655	14.69199078	4.41890315
С	36.15370458	16.84748890	4.35006765
C	38.43395166	17.69589959	4.12232471
Н	39.14176172	18.53242041	4.03766768
C	38.92948709	16.37559179	4.10727132
C	38.02423218	15.30121992	4.21271432
Н	38.42492848	14.27692294	4.19724114
C	37.06592351	17.92830319	4.24112715
Н	36.68410327	18.96198668	4.25147740
C	40.38357654	16.12426953	3.98328289
0	43.76087792	18.09818381	3.66303828
0	45.50101424	16.73649727	3.68871116
Н	45.69263420	18.79936073	3.72639999
С	44.99740018	17.91824994	3.69408142
N	46.94186091	15.04836838	5.04069716
Н	46.31440442	14.32780081	4.54650615
Н	46.58158925	15.92346519	4.52906725

С	48.37010687	14.80672087	4.77236439
Н	48.98179691	15.62329465	5.20215098
Н	48.68509161	13.84556881	5.22251705
Н	48.53057914	14.76743244	3.67906225
С	46.55216183	15.12683733	6.46559057
Н	45.46108270	15.31036454	6.51625734
Н	46.79630120	14.17488867	6.97514983
Н	47.09613243	15.95439815	6.96020276
Ι	41.53746628	20.45162424	5.36183741
Ι	41.31551028	20.58345973	2.66667196

Table S5. The Cartesian coordinates of optimized structures of I_2 molecule adsorbedat site 4 on cluster model at PBE-D3 level of theory.

atom	x	У	Z
U	43.06907995	15.81463725	3.80118934
0	43.28872487	15.45905425	5.55041257
0	42.99743340	16.14463700	2.05037519
0	42.89472093	13.34800975	3.30597372
0	44.97713861	14.07441416	3.46063748
С	44.12486039	13.12648737	3.29972662
Н	44.50797375	12.08161308	3.14907133
0	41.15537401	17.18961283	4.24887352
0	40.79597422	15.05336102	3.84523489
N	32.45608182	17.02313266	5.02663478
N	33.71015137	15.01781554	4.66441582
N	31.33144668	14.91153184	4.96503959
N	30.11075853	16.83765806	5.16386688
Н	29.37453051	16.15020449	5.33867345
N	34.73838631	17.13148064	4.74338244
Н	34.53091151	18.11660051	4.94796322
N	32.66982914	12.98793516	4.72561285
Н	33.64622126	12.71272933	4.59657045
Н	28.39894069	21.83639490	4.48492505
С	28.76026425	20.80639805	4.61967350
С	28.56234491	18.62450816	5.67561836
Н	28.05274170	17.94347891	6.37468841
С	30.36513701	19.04894129	4.09043840
Н	31.24989692	18.70204644	3.54162335
С	28.09411763	19.93101690	5.49206999
Н	27.20597786	20.27032024	6.04595195
С	29.89177686	20.35627129	3.92229016
Н	30.41965786	21.03234598	3.23316066
С	29.70380910	18.17570110	4.97952067

С	31.34220569	16.26016899	5.04337488		
C	32.53645542	14.34698767	4.79674120		
С	33.62663327	16.34176703	4.80729151		
С	31.74346381	11.93512780	4.78924674		
С	31.41097328	9.51496356	4.71960507		
Н	31.83622693	8.50433818	4.62601598		
С	30.35214326	12.11212232	4.95700719		
Н	29.95460727	13.12854269	5.04796611		
С	32.26174905	10.62379427	4.67176232		
Н	33.34653316	10.48007171	4.54083011		
С	29.51322719	10.98986260	5.00178130		
Н	28.43067478	11.14169128	5.13204939		
С	30.02730854	9.68956048	4.88502442		
Н	29.35691903	8.81842807	4.92291696		
С	36.59672656	15.54646074	4.26608218		
Н	35.89231306	14.71824362	4.13926107		
С	36.09793026	16.83000348	4.58802525		
С	38.37434599	17.71002505	4.60316209		
Н	39.08450772	18.53970869	4.73094704		
С	38.87388143	16.43097420	4.28369091		
С	37.97380699	15.36063568	4.11941886		
Н	38.38020277	14.36998974	3.86789121		
С	37.00339958	17.90763583	4.75527207		
Н	36.61358954	18.90536994	5.01305263		
С	40.33290126	16.21608844	4.11991696		
0	43.71007350	18.22101933	4.18337860		
0	45.44489540	16.86750645	3.97073490		
Н	45.64567231	18.88704808	4.38448069		
С	44.94543204	18.03131314	4.18873573		
N	46.88231500	14.95866298	4.99583446		
Н	46.26200755	14.34371556	4.36887355		
Н	46.52151493	15.91341383	4.65630089		
С	48.31347432	14.77670821	4.69675914		
Н	48.91883009	15.49787804	5.27907201		
Н	48.62938383	13.74817033	4.95743574		
Н	48.48133773	14.94745541	3.61727952		
С	46.48307657	14.76600837	6.40726670		
Н	45.39099205	14.93363034	6.48385053		
Н	46.72887555	13.73630685	6.73076733		
Н	47.01989740	15.48804450	7.05209638		
Ι	33.28789437	21.21964659	8.44164466		
Ι	32.72030545	19.13966722	6.66743731		

atom	x	У	Z		
U	43.12479792	15.65473203	3.66728961		
0	43.33122409	15.67123287	5.45251062		
0	43.06084865	15.61309034	1.88608690		
0	42.94032707	13.14417553	3.69037620		
0	45.02528387	13.87848152	3.71027615		
С	44.16944095	12.92072695	3.73981173		
Н	44.54732360	11.86568411	3.80941369		
0	41.20732049	17.09729971	3.80132103		
0	40.84129591	14.92331839	3.86336872		
Ν	32.53025810	17.11918977	4.64511058		
N	33.74092010	15.05218602	4.53921014		
Ν	31.36149154	15.03346629	4.84889718		
N	30.19533356	16.99597888	4.94670894		
Н	29.44648183	16.30883390	5.05638763		
N	34.79436967	17.15584355	4.35187366		
Н	34.57174957	18.15369797	4.38484932		
N	32.64301926	13.05761684	4.73674758		
Н	33.61043114	12.74806910	4.62167906		
Н	28.42750987	22.02267838	5.06887694		
С	28.80811880	20.99112792	5.04083232		
С	28.41226905	18.59339139	5.11825729		
Н	27.71429366	17.74510074	5.20746225		
С	30.68481388	19.43388714	4.85591610		
Н	31.75572815	19.23562299	4.74186347		
С	27.92604055	19.90419812	5.15349710		
Н	26.84526202	20.07564802	5.27065413		
С	30.18098575	20.74153713	4.89322722		
Н	30.88496327	21.58336004	4.80554425		
С	29.79682917	18.34097246	4.96910726		
С	31.41580077	16.39023576	4.80680946		
С	32.54477682	14.42385109	4.71204151		
С	33.66086298	16.38418948	4.51858627		
С	31.69099983	12.03934890	4.89172554		
С	31.29026211	9.63066363	5.01090248		
Н	31.68596261	8.60403898	4.98579315		
С	30.30837071	12.26750822	5.07144232		
Н	29.94224342	13.29944076	5.09317859		
С	32.16983975	10.70780314	4.86338403		
Н	33.24733849	10.52318364	4.72370075		

Table S6. The Cartesian coordinates of optimized structures of I_2 molecule adsorbed at site 5 on cluster model at PBE-D3 level of theory.

С	29.44042197	11.17635372	5.21778089		
Н	28.36548260	11.36888956	5.35754771		
С	29.91567618	9.85643655	5.18961545		
Н	29.22273717	9.01022456	5.30599582		
С	36.64361424	15.50968024	4.21503052		
Н	35.93596216	14.67760392	4.28986659		
С	36.13907321	16.83187986	4.24144232		
С	38.43639742	17.68645145	4.02917132		
Н	39.14673830	18.52183132	3.94690276		
С	38.92768879	16.36963325	4.00579361		
С	38.01847212	15.29580085	4.09709127		
Н	38.42197787	14.27258028	4.07631485		
С	37.05783258	17.92274857	4.15151823		
Н	36.67016380	18.95248862	4.09682311		
С	40.38619054	16.11913831	3.88508097		
0	43.76495360	18.08511438	3.54201401		
0	45.49743890	16.71527276	3.62777663		
Н	45.70121978	18.77655325	3.60672627		
С	45.00019785	17.89970978	3.59287096		
N	46.92740991	15.06027876	5.03861545		
Н	46.30859843	14.32887982	4.55182590		
Н	46.57268958	15.92308336	4.50463582		
C	48.35953336	14.81563984	4.79229249		
Н	48.96435755	15.64210096	5.21259192		
Н	48.66996721	13.86467149	5.26642164		
Н	48.53321561	14.75390734	3.70207343		
С	46.52170397	15.16968890	6.45744278		
Н	45.42975373	15.35044789	6.49294115		
Н	46.76436848	14.23098751	6.99148085		
Н	47.05707556	16.01096976	6.93789884		
Ι	37.10480128	18.94787295	9.78700098		
Ι	37.28873086	18.35843079	7.08859054		

Table S7. The Cartesian coordinates of optimized structures of I_2 molecule adsorbedat site 6 on cluster model at PBE-D3 level of theory.

atom	x	У	Z	
U	42.94307626	15.82253125	4.57113987	
0	43.06100137	16.03284471	6.38204208	
0	42.97540300	15.59413780	2.80143522	
0	42.79150911	13.34804141	4.92725469	
0	44.85668306	14.11198177	4.79957881	
С	44.02631065	13.15009924	4.97944356	
Н	44.42577021	12.12279290	5.18728145	

0	41.02724645	17.23020142	4.45795060		
0	40.68864326	15.07043917	4.70050353		
N	32.30847255	17.16625897	4.57791468		
N	33.54548788	15.11534272	4.71045136		
N	31.14626576	15.07163594	4.72294674		
N	29.95544224	17.01756372	4.60382804		
Н	29.20758702	16.32257205	4.65435292		
N	34.59190033	17.22422868	4.55849070		
Н	34.35822940	18.21682534	4.48401876		
N	32.45355311	13.11306695	4.84491576		
Н	33.43130415	12.81520319	4.86112855		
Н	28.12924227	22.01606657	4.30509751		
C	28.52193383	20.99047664	4.36606331		
C	28.14624478	18.59279531	4.51772891		
Н	27.45184540	17.73885507	4.57571531		
C	30.42443937	19.45554244	4.44862155		
Н	31.50336060	19.26750303	4.45325681		
C	27.64492932	19.89603155	4.44004713		
Н	26.55597482	20.05568327	4.43762729		
С	29.90531119	20.75544807	4.37134396		
Н	30.60541209	21.60324235	4.31407080		
C	29.54161696	18.35475315	4.52309306		
C	31.19242781	16.42666573	4.63408837		
C	32.34484942	14.47685638	4.75685860		
C	33.45780973	16.44567598	567598 4.62030317		
С	31.50113993	12.08621138	4.91060183		
С	31.11419638	9.67687026	5.06417797		
Н	31.52106008	8.65638170	5.12983348		
С	30.10422829	12.29825533	4.89573625		
Н	29.72753660	13.32454094	4.82981190		
С	31.99374682	10.76194587	4.99583807		
Н	33.08222717	10.58955625	5.00815567		
С	29.23655408	11.19930695	4.96491983		
Н	28.15049580	11.37963565	4.95222030		
С	29.72558989	9.88679473	5.04920176		
Н	29.03264176	9.03430016	5.10286049		
С	36.46750184	15.60224908	4.68694327		
Н	35.76448594	14.76696146	4.77124434		
C	35.95241666	16.91639895	4.57021398		
C	38.23127101	17.79187081	4.46157370		
Н	38.93536711	18.63191147	4.37393844		
C	38.74427167	16.48286044	4.57799390		
С	37.84889178	15.40030066	4.69087904		

Н	38.26267200	14.38523888	4.78208894	
С	36.85552997	18.00564033	4.45895653	
Н	36.45783243	19.02926120	4.36847560	
С	40.20388008	16.25272657	4.57915402	
0	43.55358862	18.23715404	4.29503973	
0	45.28641888	16.88140559	4.44206954	
Н	45.48944228	18.93920869	4.30923210	
С	44.79161498	18.06187484	4.34557489	
N	47.23879048	15.18888135	4.82883890	
Н	46.43291260	14.51329907	5.02223534	
Н	46.67160509	16.09631559	4.80461521	
С	47.72180391	14.92589334	3.45616255	
Н	48.45892926	15.69672377	3.16115836	
Н	48.19668112	13.92748397	3.40764327	
Н	46.85560128	14.95845410	2.77048076	
С	48.27050034	15.17998261	5.88439425	
Н	47.79896498	15.39901648	6.86071208	
Н	48.75628333	14.18649323	5.92753062	
Н	49.03530270	15.94977657	5.66709882	
Ι	47.14917281	15.95652715	9.83977489	
Ι	44.97868279	16.00252936	8.10791749	

Table S8. The lattice parameters of the periodic UOF at spin multiplicity of 1 and 3

$U O_{eff}$ value	s ranging noi	II 0–0.					
	Lattice parameters						
Spin multiplicity of 1			Spin multiplicity of 3				
a(Å)	b(Å)	c(Å)	V(Å ³)	a(Å)	b(Å)	c(Å)	V(Å ³)
31.918	18.606	13.154	7787.36	31.919	18.610	13.224	7830.60
31.919	18.607	13.148	7783.96	31.919	18.610	13.224	7830.58
31.919	18.606	13.143	7780.72	31.919	18.610	13.224	7830.59
31.919	18.605	13.134	7775.20	31.919	18.610	13.224	7830.56
31.919	18.606	13.160	7791.01	31.919	18.614	13.217	7828.04
31.919	18.606	13.161	7791.82	31.919	18.614	13.216	7827.46
31.919	18.608	13.207	7819.99	31.916	18.609	13.204	7817.55
	a(Å) 31.918 31.919 31.919 31.919 31.919 31.919 31.919 31.919	Spin multip a(Å) b(Å) 31.918 18.606 31.919 18.607 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606 31.919 18.606	Spin multiplicity of 1 a(Å) b(Å) c(Å) 31.918 18.606 13.154 31.919 18.607 13.148 31.919 18.606 13.143 31.919 18.606 13.143 31.919 18.606 13.143 31.919 18.606 13.160 31.919 18.606 13.161 31.919 18.606 13.161 31.919 18.606 13.207	Lattice param Lattice param Spin multiplicity of 1 a(Å) b(Å) c(Å) V(Å ³) 31.918 18.606 13.154 7787.36 31.919 18.607 13.148 7783.96 31.919 18.606 13.143 7780.72 31.919 18.606 13.134 7775.20 31.919 18.606 13.160 7791.01 31.919 18.606 13.161 7791.82 31.919 18.608 13.207 7819.99	Lattice parametersLattice parametersSpin multiplicity of 1 $a(Å)$ $b(Å)$ $c(Å)$ $V(Å^3)$ $a(Å)$ 31.918 18.606 13.154 7787.36 31.919 31.919 18.607 13.148 7783.96 31.919 31.919 18.606 13.143 7780.72 31.919 31.919 18.606 13.134 7775.20 31.919 31.919 18.606 13.160 7791.01 31.919 31.919 18.606 13.161 7791.82 31.919 31.919 18.608 13.207 7819.99 31.916	Lattice parametersLattice parametersSpin multiplicity of 1Spin multiplicity of 1 $a(Å)$ $b(Å)$ $c(Å)$ $V(Å^3)$ $a(Å)$ $b(Å)$ 31.918 18.606 13.154 7787.36 31.919 18.610 31.919 18.607 13.148 7783.96 31.919 18.610 31.919 18.606 13.143 7780.72 31.919 18.610 31.919 18.606 13.134 7775.20 31.919 18.610 31.919 18.606 13.160 7791.01 31.919 18.614 31.919 18.606 13.161 7791.82 31.919 18.614 31.919 18.608 13.207 7819.99 31.916 18.609	Lattice parameters Lattice parameters Spin multiplicity of 1 Spin multiplicity of a(Å) b(Å) c(Å) V(ų) a(Å) b(Å) c(Å) 31.918 18.606 13.154 7787.36 31.919 18.610 13.224 31.919 18.607 13.148 7783.96 31.919 18.610 13.224 31.919 18.606 13.143 7780.72 31.919 18.610 13.224 31.919 18.606 13.143 7780.72 31.919 18.610 13.224 31.919 18.606 13.143 7775.20 31.919 18.610 13.224 31.919 18.606 13.160 7791.01 31.919 18.614 13.224 31.919 18.606 13.160 7791.01 31.919 18.614 13.217 31.919 18.606 13.161 7791.82 31.919 18.614 13.216 31.919 18.608 13.207 7819.99 31.916

with U_{eff} values ranging from 0–6.

Table S9. The energies of the periodic UOF system at spin multiplicity of 1 and 3 with U_{eff} values ranging from 0–6.

Figure S2. (a-g) Density of states (DOS) of the periodic UOF system with U_{eff} values ranging from 0–6 eV. The Fermi levels are set to zero.

Figure S3. Optimized structures of I_2 molecule adsorbed at different sites in the periodic UOF model.