Supporting Information for: The trials and triumphs of modelling X-ray absorption spectra of transition metal phthalocyanines

Esma Birsen Boydas^a and Michael Roemelt^{*a}

^a Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, D-12489 Berlin

Contents

1	Experimental spectra in the SI	3
2	ASS1ST results	
3	Nitrogen K-edge	5
4	Transition metal L-edge	12
5	Example input block for TDDFT calculations	
6	Example input block for CASCI/NEVPT2 calculations	15
7	Example configuration space for RASCI calculations	15
8	XYZ coordinates	31
	8.1 CoPc	31
	8.2 FePc	32
	8.3 MnPc	33
	8.4 CoPcF16	35
	8.5 FePcF16	36

List of Figures

1	ASS1ST scheme for CoPcF16	3
2	ASS1ST scheme for FePc	4
3	ASS1ST scheme for MnPc	4
4	ASS1ST scheme for FePcF16	5
11	Natural difference orbitals (NDOs) for the nitrogen K-edge of CoPc	5

5	Experimental (black) and calculated (green) nitrogen K-edge XAS for TMPcF16s. Energies are given in eV units, and the intensities are normal- ized. The experimental spectra for CoPcF16 and FePcF16 were adapted from previous investigations by Balle <i>et al.</i> ¹ and Greulich <i>et al.</i> , ² respec-	
6	tively	6
	try. The transitions originating from N_{aza} and N_{pyr} are denoted with red	
	and blue bars, respectively. The experimental data for CoPc on graphene/Pt(1	11)
7	were taken from a study by Uthlein <i>et al.</i> \cdots \cdots \cdots \cdots \cdots	6
/	Experimental and calculated N K-edge spectra for FePc with A_{1g} sym-	
	metry. The transitions originating from N_{aza} and N_{pyr} are denoted with	
	red and blue bars, respectively. The experimental data for FePc on rulle TiO (110) were adopted from a provious study of Karstona at al^4	7
Q	$110_2(110)$ were adapted from a previous study of Karstens <i>et al.</i> Experimental and calculated N K adapted spectra for CoPeE16 with ² F	/
0	Experimental and calculated N K-edge spectra for Corer to with E_g symmetry. The transitions originating from N and N are denoted	
	with red and blue bars, respectively. The experimental curves of $CoPcE16$	
	on Ni(111) were taken from a previous study Balle <i>et al</i> 1	7
9	Experimental and calculated F K-edge spectra for FePcF16 Only one 1s	,
-	orbital per fluorine-type (\mathbf{F}_{inner} and \mathbf{F}_{outer}) has been taking into account.	
	The experimental results were taken from a previous study on Cu(111)	
	surfaces. ⁵	8
10	Calculated fluorine K-edge of CoPcF16 (top) and FePcF16 (bottom). Only	
	the lowest energy transitions are shown.	8
12	Natural difference orbitals (NDOs) for the nitrogen K-edge of FePc	9
13	Natural difference orbitals (NDOs) for the nitrogen K-edge of MnPc	9
14	Natural difference orbitals (NDOs) for the nitrogen K-edge of CoPcF16.	10
15	Natural difference orbitals (NDOs) for the nitrogen K-edge of FePcF16.	11
16	Natural difference orbitals (NDOs) for the fluorine K-edge of CoPcF16.	11
17	Natural difference orbitals (NDOs) for the fluorine K-edge of FePcF16.	12
18	Calculated Co L-edge XAS of CoPcF16 (along with CoPc spectra in grey)	
	for comparison.	12
19	Calculated Fe L-edge XAS of FePcF16 (along with FePc spectra in grey)	10
20	for comparison.	13
20	Active orbitals of the extended active space. Gouterman-like ligand or-	14
21	bitais as well as metal based 3d orbitals are included in the active manifold.	14
21	Experimental and calculated IVIN L-edge XAS for MINPC. The experimen-	14
	tal results were adapted from a previous study on Ag(111) surfaces	14

1 Experimental spectra in the SI

• The N K-edge experimental data for CoPcF16 was adapted from a previous study by Balle *et al.* with the title "Influence of the Fluorination of CoPc on the Interfacial

Electronic Structure of the Coordinated Metal Ion".¹ Copyright © 2017, American Chemical Society.

- The N K-edge experimental data for FePcF16 was adapted from a previous study by Greulich *et al.* with the title "Influence of the Fluorination of Iron Phthalocyanine on the Electronic Structure of the Central Metal Atom".² Copyright © 2021 The Authors. Published by American Chemical Society.
- The K-edge experimental data for CoPc were taken from a study by Uihlein *et al.*, with the title "Influence of Graphene on Charge Transfer between CoPc and Metals: The Role of Graphene–Substrate Coupling".³ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) Copyright © 2011, American Chemical Society.
- The fluorine K-edge experimental spectra of FePcF16 were adapted from a previous study by Belser *et al.* with the title "Interaction Channels Between Perfluorinated Iron Phthalocyanine and Cu(111)"⁵ Copyright © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

2 ASS1ST results

Figure 1 ASS1ST scheme for CoPcF16.

Figure 2 ASS1ST scheme for FePc.

Figure 3 ASS1ST scheme for MnPc.

Figure 4 ASS1ST scheme for FePcF16.

Figure 5 Experimental (black) and calculated (green) nitrogen K-edge XAS for TMPcF16s. Energies are given in eV units, and the intensities are normalized. The experimental spectra for CoPcF16 and FePcF16 were adapted from previous investigations by Balle *et al.*¹ and Greulich *et al.*,² respectively.

Figure 6 Experimental and calculated N K-edge spectra for CoPc with ${}^{2}E_{g}$ symmetry. The transitions originating from N_{aza} and N_{pyr} are denoted with red and blue bars, respectively. The experimental data for CoPc on graphene/Pt(111) were taken from a study by Uihlein *et al.*³

Figure 7 Experimental and calculated N K-edge spectra for FePc with ${}^{3}A_{1g}$ symmetry. The transitions originating from N_{aza} and N_{pyr} are denoted with red and blue bars, respectively. The experimental data for FePc on rutile TiO₂(110) were adapted from a previous study of Karstens *et al.*⁴

Figure 8 Experimental and calculated N K-edge spectra for CoPcF16 with ${}^{2}E_{g}$ symmetry. The transitions originating from N_{aza} and N_{pyr} are denoted with red and blue bars, respectively. The experimental curves of CoPcF16 on Ni(111) were taken from a previous study Balle *et al.*¹

Figure 9 Experimental and calculated F K-edge spectra for FePcF16. Only one 1s orbital per fluorine-type ($\mathbf{F_{inner}}$ and $\mathbf{F_{outer}}$) has been taking into account. The experimental results were taken from a previous study on Cu(111) surfaces.⁵

Figure 10 Calculated fluorine K-edge of CoPcF16 (top) and FePcF16 (bottom). Only the lowest energy transitions are shown.

3 Nitrogen K-edge

Figure 11 Natural difference orbitals (NDOs) for the nitrogen K-edge of CoPc.

Figure 12 Natural difference orbitals (NDOs) for the nitrogen K-edge of FePc.

Figure 13 Natural difference orbitals (NDOs) for the nitrogen K-edge of MnPc.

Figure 14 Natural difference orbitals (NDOs) for the nitrogen K-edge of CoPcF16.

Figure 15 Natural difference orbitals (NDOs) for the nitrogen K-edge of FePcF16.

Figure 16 Natural difference orbitals (NDOs) for the fluorine K-edge of CoPcF16.

Figure 17 Natural difference orbitals (NDOs) for the fluorine K-edge of FePcF16.

4 Transition metal L-edge

Figure 18 Calculated Co L-edge XAS of CoPcF16 (along with CoPc spectra in grey) for comparison.

Figure 19 Calculated Fe L-edge XAS of FePcF16 (along with FePc spectra in grey) for comparison.

Figure 20 Active orbitals of the extended active space. Gouterman-like ligand orbitals as well as metal based 3d orbitals are included in the active manifold.

Figure 21 Experimental and calculated Mn L-edge XAS for MnPc. The experimental results were adapted from a previous study on Ag(111) surfaces.⁶

5 Example input block for TDDFT calculations

```
%tddft NRoots 500
XASLoc[0] = 5,12
XASLoc[1] = 5,12
OrbWin[0] = 5,12,-1,-1
OrbWin[1] = 5,12,-1,-1
DoQuad True
TDA True
end
```

6 Example input block for CASCI/NEVPT2 calculations

```
%casscf
nel 13
norb 8
mult 4,2
nroots 40,115
TrafoStep RI
MaxIter 1
rel dosoc true end
PTMethod SC_NEVPT2
PTSettings
QDtype 3
end
end
```

7 Example configuration space for RASCI calculations

```
%casscf
nel 16
norb 12
mult 5,3,1
nroots 200,200,200
TrafoStep RI
rel dosoc true
dodtensor false
end
maxiter 1
refs
...
```

8 XYZ coordinates

8.1 CoPc

Ν	1.90760400764616	-0.00013656199226	-0.00006078140000
Ν	2.37327899511037	-2.37340454052613	-0.00002311500417
Ν	-0.00005448179457	-1.90784908863108	-0.00006338972785
Ν	-2.37334972611391	-2.37351245114297	-0.00001159797819
Ν	-1.90769322703267	-0.00028825476972	-0.00002430164273
Ν	-2.37336280938339	2.37301750644065	0.0000349805046
Ν	-0.00004679589146	1.90746520627512	-0.00007265410691
Ν	2.37325359321621	2.37307470388284	-0.00005685135157
С	2.73025697496674	1.10710001839777	-0.00004463978221
С	2.73030490058675	-1.10745665424054	-0.00001299884476
С	1.10730285198220	-2.73050476687278	-0.00005472446884
С	-1.10728950828299	-2.73047697466832	-0.00003388779446
С	-2.73037184377130	-1.10753806465781	-0.00000315224592
С	-2.73036551308103	1.10703971689051	0.00002049219616
С	-1.10738698685306	2.73015163305733	-0.00004073606805
С	1.10721245908342	2.73007080459115	-0.00006539031563
С	4.13063153556912	0.69723471469717	0.00002633814809
С	4.13060786908568	-0.69760499185474	0.00005031805467
С	0.69748220591619	-4.13074503250404	-0.00006666501682
С	-0.69736679394799	-4.13079191127717	-0.00004905931049
С	-4.13068549908172	-0.69767604742426	0.00006195023848
С	-4.13068427590127	0.69717075838994	0.00009017254767
С	-0.69746809295615	4.13042000585655	-0.00006187829815
С	0.69738232172578	4.13039019108694	-0.00007924829235
С	5.31475662769833	1.41864392123955	0.00008580934859
С	6.50854199048662	0.69865003950611	0.00017220467436
С	6.50850838074998	-0.69913794089740	0.00018943249223
С	5.31470478779604	-1.41908790302745	0.00012539077919
С	1.41895284189239	-5.31484656643585	-0.00008138576725
С	0.69899524711639	-6.50864548919934	-0.00011639566893
С	-0.69880774549123	-6.50868356851814	-0.00012904368574
С	-1.41880330689617	-5.31489185626583	-0.00009412777373
С	-5.31481741016186	-1.41910330417167	0.00010422712717
С	-6.50860475035784	-0.69911621618054	0.00014881611942
С	-6.50859329623017	0.69867550002716	0.00015653830556
С	-5.31478929415402	1.41863855036220	0.00011524827758
С	-1.41883965141135	5.31459991634637	-0.00005883522242
С	-0.69878588584800	6.50834290730459	-0.00009738305575
С	0.69901898565033	6.50828034182167	-0.00013213262874

С	1.41892538306042	5.31443671323007	-0.00010932107293
Η	5.30762664128829	2.50048185131818	0.00008109707455
Η	5.30754092922293	-2.50092043445590	0.00015264203877
Η	2.50078371300951	-5.30769769869652	-0.00008664509391
Η	-2.50063381067410	-5.30773675447106	-0.00008769138317
Η	-5.30768280358761	-2.50093409729705	0.00008785007962
Η	-5.30761051912615	2.50046746236544	0.00014080208064
Η	-2.50067182053003	5.30752815844390	-0.00003869906798
Η	2.50075678531225	5.30718360852486	-0.00013044242140
Η	7.45210839344797	1.22969547811653	0.00022600011942
Η	7.45204949179915	-1.23023516559752	0.00026374911052
Η	1.23008427651020	-7.45219132146213	-0.00014750045762
Η	-1.22985965357285	-7.45225064809487	-0.00014657347360
Η	-7.45216427036442	-1.23017520016851	0.00017457032741
Η	-7.45214487146489	1.22975311319566	0.00020245065418
Η	-1.22980615465101	7.45192705518792	-0.00011305407526
Η	1.23014113696887	7.45180744473419	-0.00015988450815
Со	-0.00007252828518	-0.00019381578875	-0.00012541083898

8.2 FePc

Ν	1.94675930319691	0.00038080075122	-0.00043895923883
Ν	2.37779559221143	-2.37798899581087	-0.00030370938076
Ν	-0.00049880361469	-1.94707567307003	-0.00042309067084
Ν	-2.37664278677916	-2.37694014272182	-0.00026334876121
Ν	-1.94679179667339	-0.00077103187266	-0.00041775969253
Ν	-2.37782353665591	2.37760525341211	-0.00027953298314
Ν	0.00047025822109	1.94670676965312	-0.00042414802720
Ν	2.37660438612261	2.37654984565071	-0.00026645269314
С	2.75246424199604	1.11271209542245	-0.00032400906072
С	2.75394443754487	-1.11430995403065	-0.00032932765938
С	1.11418461517259	-2.75429855233004	-0.00033451358675
С	-1.11280031510402	-2.75280746229680	-0.00029087581081
С	-2.75252143119075	-1.11310338753599	-0.00031247027121
С	-2.75396440818147	1.11392519998125	-0.00029830766715
С	-1.11421709766337	2.75392058396862	-0.00032659174286
С	1.11277918816089	2.75244004520974	-0.00029020156432
С	4.14653941033955	0.69863298399871	-0.00011758693264
С	4.14645012940469	-0.70223874336906	-0.00013927774573
С	0.70215372453563	-4.14682025104444	-0.00013763703790
С	-0.69872976761546	-4.14691577392334	-0.00011523695788
С	-4.14653626240210	-0.69902195412293	-0.00013004571559

С	-4.14649546024451	0.70184782844038	-0.00010941937679
С	-0.70215208259611	4.14646084575735	-0.00013336361380
С	0.69872536468819	4.14652005379882	-0.00012972186979
С	5.33793658961799	1.41705781618286	0.00012326931358
С	6.52484725802694	0.69712896945764	0.00028923816977
С	6.52477946996587	-0.70659107063644	0.00025060789466
С	5.33681015677643	-1.42374176960539	0.00003653867936
С	1.42357310094969	-5.33726142029200	0.00006116950425
С	0.70635340801399	-6.52518639195252	0.00026184180933
С	-0.69737482154099	-6.52524529943025	0.00028091977727
С	-1.41723539146686	-5.33826207238707	0.00010136506830
С	-5.33790540567545	-1.41749966097557	0.00008271810580
С	-6.52484925314067	-0.69762131710430	0.00026703294923
С	-6.52483135200696	0.70610266138825	0.00025892199020
С	-5.33689331675129	1.42329915746670	0.00007363178023
С	-1.42352351614197	5.33693781803323	0.00006183815473
С	-0.70627066567950	6.52482499639409	0.00024676026168
С	0.69745241099528	6.52484106537977	0.00026803301216
С	1.41726856218086	5.33784255602610	0.00008500753736
Η	5.33271973320394	2.49893181375720	0.00014596072185
Η	5.32871105459239	-2.50561231518257	0.00003553054890
Η	2.50544401616776	-5.32927863489223	0.00005022892286
Η	-2.49909943720310	-5.33292449667697	0.00013457671293
Η	-5.33262844475115	-2.49936963693981	0.00008137978811
Η	-5.32885591818423	2.50517007029015	0.00010116841015
Η	-2.50539504694048	5.32901694043139	0.00006283989166
Η	2.49913217724629	5.33246248105765	0.00011310995963
Η	7.47013997729430	1.22534608656610	0.00048218598043
Η	7.46953184246570	-1.23558551023121	0.00042068739535
Η	1.23532308220156	-7.46995200970030	0.00041594053531
Η	-1.22563259663811	-7.47051587863805	0.00046778635690
Η	-7.47012028879009	-1.22587860318798	0.00042617929873
Η	-7.46960816900623	1.23505308106409	0.00043097867598
Η	-1.23520533970540	7.46960822613967	0.00040637846172
Η	1.22574185135611	7.47009395225740	0.00043676469318
Fe	-0.00003263030626	-0.00018798797547	-0.00062500230057

8.3 MnPc

Ν	1.94885290431288	-0.00013770397919	0.00030956236231
Ν	2.38780640354127	-2.37744574139792	0.00022051156257
Ν	0.00005648420359	-1.96215017176507	0.00037821069778

Ν	-2.38770231460935	-2.37752410533222	0.00022332299341
Ν	-1.94888054890581	-0.00022485350644	0.00036430270295
Ν	-2.38784604848528	2.37708145598923	0.00023476198920
Ν	-0.00010186479127	1.96178461592909	0.00035221940701
Ν	2.38767736518723	2.37713617385777	0.00015404917376
С	2.76235336341250	1.12184431205517	0.00017617302178
С	2.76241487691730	-1.12212257960997	0.00021995122377
С	1.12023506927749	-2.76566733042193	0.00026618372391
С	-1.12007431235246	-2.76562294787354	0.00026274723336
С	-2.76236294961763	-1.12222640636679	0.00024841986688
С	-2.76245940509173	1.12175887169900	0.00025121030343
С	-1.12027461120560	2.76531646642832	0.00026444070855
С	1.12004284838330	2.76522455245828	0.00021973881715
С	4.15697343097844	0.69939143713648	0.00001800838789
С	4.15696903807769	-0.69955655489039	0.00005197218162
С	0.70341509031201	-4.14672432811008	0.00015384400760
С	-0.70337708047609	-4.14673395646832	0.00015314405596
С	-4.15698000850561	-0.69977716757416	0.00007752849370
С	-4.15699616121263	0.69917480592808	0.00008632365081
С	-0.70343011431184	4.14635679295502	0.00015651215890
С	0.70336633833194	4.14633490064705	0.00013721447025
С	5.34585194315615	1.41876323409019	-0.00018213315105
С	6.53615393082941	0.70035403920185	-0.00030994048730
С	6.53613757539471	-0.70053750164261	-0.00025614715179
С	5.34583336912932	-1.41893208093276	-0.00009375539420
С	1.42194449293582	-5.34368635493051	-0.00000450758058
С	0.70402092686346	-6.52660361995509	-0.00014216104520
С	-0.70433467578411	-6.52658776493423	-0.00014213893055
С	-1.42210358810677	-5.34356136692100	-0.0000004603614
С	-5.34581743216974	-1.41920516050610	-0.00013148392944
С	-6.53614750115444	-0.70084862853474	-0.00032562068794
С	-6.53617504746199	0.70003890540354	-0.00031234652571
С	-5.34590054621605	1.41848186342580	-0.00011362060238
С	-1.42190887254341	5.34335446306405	0.00003380194248
С	-0.70393715557882	6.52624168777465	-0.00011288508577
С	0.70441642789170	6.52617552155803	-0.00012826484443
С	1.42213878803907	5.34312487365252	-0.00001962442265
Η	5.33881815158168	2.50063722278337	-0.00021760850122
Η	5.33873101216119	-2.50080291289221	-0.00006608303681
Η	2.50379651943813	-5.33799445526684	-0.00000505850047
Η	-2.50395281613874	-5.33765281285098	-0.00000835957852
Η	-5.33874219541903	-2.50108080963917	-0.00014922427475

Η	-5.33890545368547	2.50035628955877	-0.00012195385936
Η	-2.50376038833766	5.33773033350272	0.00003705022477
Н	2.50398686404755	5.33715714629356	-0.00004398579469
Η	7.48025405147707	1.23054334194374	-0.00044940200469
Η	7.48022615455029	-1.23075047319436	-0.00037081880284
Η	1.23109080769132	-7.47250812491849	-0.00026004930498
Η	-1.23145143757097	-7.47246640317011	-0.00026023429329
Η	-7.48022667966855	-1.23107229651628	-0.00049294108265
Η	-7.48027760010111	1.23022392248919	-0.00047954159109
Η	-1.23097130090558	7.47216515481220	-0.00020332736008
Η	1.23157092417368	7.47203260118240	-0.00024659168833
Mn	-0.00003704188853	-0.00016637171853	0.00059865018714

8.4 CoPcF16

Ν	1.92841505816256	-0.00030279957971	-0.16638642313408
Ν	2.36868406088132	-2.38448739916422	-0.13204946960590
Ν	0.00001217525767	-1.91328070311633	-0.16370690369063
Ν	-2.36863754290399	-2.38436959499222	-0.13193133381107
Ν	-1.92843674022866	-0.00015743309321	-0.16629983273148
Ν	-2.36868626165874	2.38405424140041	-0.13199788887337
Ν	-0.00004179392645	1.91283635878504	-0.16376010918178
Ν	2.36861102574798	2.38390703109109	-0.13194273319341
С	2.73727356330004	1.10642703716175	-0.13680662388353
С	2.73733044570195	-1.10700963510001	-0.13645803061048
С	1.11554382642851	-2.73142283621758	-0.13711184159599
С	-1.11551751654463	-2.73134756719060	-0.13666331918158
С	-2.73730612037416	-1.10689101029515	-0.13677913011717
С	-2.73731402705962	1.10657011290545	-0.13637893141192
С	-1.11554940730986	2.73099760233623	-0.13711512607899
С	1.11549901683810	2.73088745232912	-0.13669215089226
С	4.12533740258543	0.70272315325002	-0.07878775485604
С	4.12545787338931	-0.70319893673017	-0.07909362380265
С	0.69915148809078	-4.13383698826185	-0.08392955899863
С	-0.69914119947022	-4.13384965185734	-0.08423540876741
С	-4.12536330250366	-0.70314529999502	-0.07874347792804
С	-4.12543967068509	0.70278449964731	-0.07904558280345
С	-0.69913466136344	4.13340334481943	-0.08397296227466
С	0.69915854673446	4.13340046180889	-0.08423573292117
С	5.31483135128159	1.40825234106195	0.01673142538901
С	6.50620010370781	0.69788324325260	0.12712992128371
С	6.50631000911183	-0.69803578755652	0.12701336024375

С	5.31503571938691	-1.40856644083460	0.01656426336306
С	1.40631252479636	-5.31640311881151	0.00842506302114
С	0.69503190506378	-6.51386113590278	0.11643059595107
С	-0.69511650269095	-6.51381388707565	0.11650173279608
С	-1.40635119193181	-5.31631142624570	0.00852137364961
С	-5.31490825222710	-1.40860493021171	0.01669764841111
С	-6.50624621649807	-0.69818114791056	0.12708601776568
С	-6.50629309270645	0.69773563398395	0.12704532456178
С	-5.31498218399754	1.40820608230817	0.01662074702296
С	-1.40628688292659	5.31598041743527	0.00833665778161
С	-0.69499556006085	6.51342889377372	0.11638082459996
С	0.69515360795221	6.51336167908851	0.11656514549938
С	1.40637922142202	5.31584995794296	0.00861244699456
F	5.36230839309944	2.73750960585600	0.02110401298845
F	5.36269984594574	-2.73781845557393	0.02067661333642
F	2.73422893142659	-5.36587284128574	0.01331710604933
F	-2.73426733323479	-5.36572660312016	0.01343601997204
F	-5.36248851705732	-2.73786339770833	0.02097173549481
F	-5.36257796293413	2.73746276837679	0.02080802837190
F	-2.73420280513160	5.36547603742521	0.01311972696537
F	2.73429558132762	5.36525001932908	0.01362480856722
F	7.66338721569730	1.35105967782632	0.24476272359334
F	7.66358511082836	-1.35107422831948	0.24450088244608
F	1.35240266216110	-7.66741349652608	0.23117695226573
F	-1.35254577763371	-7.66732613417762	0.23128283869641
F	-7.66346037053662	-1.35131966831426	0.24467065531844
F	-7.66353272317084	1.35082643122289	0.24456637475449
F	-1.35235289697330	7.66700021292111	0.23105925789399
F	1.35258643074855	7.66686553414996	0.23140854074002
Со	-0.00004658333515	-0.00023327632114	-0.18102487544278

8.5 FePcF16

Fe	-0.00000099904389	-0.00020223675671	0.00017369783134
Ν	1.94391242117970	-0.00330965207958	-0.00017602159177
Ν	2.39667186952585	-2.39687551238573	-0.00032884287411
Ν	0.00310607681533	-1.94411593735907	-0.00017646164220
Ν	-2.39000073773558	-2.39020263565171	0.00004337767127
Ν	-1.94391311433227	0.00290386589616	0.00035067476551
Ν	-2.39667077556495	2.39646778313845	0.00042188885390
Ν	-0.00310693124608	1.94370962254697	0.00035072340908
Ν	2.38999919074555	2.38979652530156	0.00004393080286

С	2.76236772044550	1.12007032694080	0.00003966420687
С	2.76644850528798	-1.12581928572822	-0.00026233752985
С	1.12561561404412	-2.76665241663621	-0.00026299109428
С	-1.12027407472486	-2.76257113539207	0.00003872175438
С	-2.76236733801797	-1.12047529759790	0.00006675901819
С	-2.76644957504488	1.12541412855581	0.00037270998730
С	-1.12561699930510	2.76624602294144	0.00037233830327
С	1.12027235455829	2.76216351801817	0.00006667789737
С	4.16319092383346	0.70716183662350	0.00010624074167
С	4.16462179505192	-0.71320282851445	-0.00012941203991
С	0.71299888214132	-4.16482556799938	-0.00013100542857
С	-0.70736605507465	-4.16339448021233	0.00010441864325
С	-4.16319061835931	-0.70756757638470	-0.00006448822524
С	-4.16462161134580	0.71279651176306	0.00017164615025
С	-0.71299909669485	4.16441788677337	0.00017054630266
С	0.70736475440143	4.16298664706754	-0.00006536864560
С	5.36681420570375	1.42770378032389	0.00027115906376
С	6.57463812975188	0.70180754496249	0.00021414745784
С	6.57630315530291	-0.71393777870527	-0.00000406559886
С	5.36838493424025	-1.43700473729945	-0.00017195352870
С	1.43680059526725	-5.36858893248398	-0.00017423415862
С	0.71373351378679	-6.57650704561858	-0.00000733274774
С	-0.70201188964730	-6.57484186111287	0.00021063327592
С	-1.42790796279108	-5.36701788915132	0.00026843346923
С	-5.36681404505655	-1.42810888269509	-0.00029619038973
С	-6.57463751390834	-0.70221227864896	-0.00030307073042
С	-6.57630205062342	0.71353291142899	-0.00008433946276
С	-5.36838392302842	1.43659961312048	0.00014818465568
С	-1.43680173380569	5.36818039599370	0.00014624827505
С	-0.71373448812728	6.57609810205140	-0.00008704969515
С	0.70201064752667	6.57443314465468	-0.00030550688059
С	1.42790683675647	5.36660952792689	-0.00029777085504
F	5.41627239646772	2.75915019953073	0.00049387951638
F	5.41326978830010	-2.76816073540622	-0.00038269029513
F	2.76795660018944	-5.41347389239669	-0.00038485261771
F	-2.75935471864547	-5.41647614471042	0.00049088736852
F	-5.41627327912549	-2.75955566510677	-0.00052738745415
F	-5.41326772945803	2.76775426867008	0.00035245247430
F	-2./6/95635044867	5.41306490992751	0.00035029185110
F.	2./59353301//894	5.41606/9/9/9593	-0.00052887319395
F.	/./4226636906939	1.3481/298632491	0.0003/0/6564576
F.	/./451/659696649	-1.35948894731833	-0.00005010180659

F	1.35928448064144	-7.74538053729203	-0.00005409099290
F	-1.34837749453536	-7.74247003372037	0.00036627643824
F	-7.74226591953191	-1.34857720336371	-0.00052688493350
F	-7.74517540261769	1.35908401188477	-0.00010518952979
F	-1.35928508287653	7.74497174029930	-0.00010882444853
F	1.34837585093753	7.74206133526552	-0.00053003743954

References

- D. Balle, H. Adler, P. Grüninger, R. Karstens, R. Ovsyannikov, E. Giangrisostomi, T. Chassé and H. Peisert, *The Journal of Physical Chemistry C*, 2017, **121**, 18564– 18574.
- [2] K. Greulich, M. Trautmann, A. Belser, S. Bölke, R. Karstens, P. Nagel, S. Schuppler, M. Merz, A. Chassé, T. Chassé and H. Peisert, *The Journal of Physical Chemistry C*, 2021, **125**, 6851–6861.
- [3] J. Uihlein, M. Polek, M. Glaser, H. Adler, R. Ovsyannikov, M. Bauer, M. Ivanovic, A. B. Preobrajenski, A. V. Generalov, T. Chassé and H. Peisert, *The Journal of Physical Chemistry C*, 2015, **119**, 15240–15247.
- [4] R. Karstens, M. Glaser, A. Belser, D. Balle, M. Polek, R. Ovsyannikov, E. Giangrisostomi, T. Chassé and H. Peisert, *Molecules*, 2019, 24, 4579.
- [5] A. Belser, R. Karstens, P. Nagel, M. Merz, S. Schuppler, T. Chassé and H. Peisert, *physica status solidi* (*b*), 2019, **256**, 1800292.
- [6] F. Petraki, H. Peisert, F. Latteyer, U. Aygül, A. Vollmer and T. Chassé, *The Journal of Physical Chemistry C*, 2011, **115**, 21334–21340.