Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary Material

Theoretical Study on the H-atom Abstraction Reactions of Pentanol + HO₂, Part I: Five Branched Pentanol Isomers

Jin-Tao Chen^{a,b}, Yueying Liang^c, Haoyuan Lang^a, Xingcai Lu^c, Lijun Yang^d, Chong-Wen Zhou^{*a,b}

^a School of Energy and Power Engineering, Beihang University, Beijing 100191, PR

China

^b Combustion Chemistry Centre, School of Biological and Chemical Sciences, MaREI, Ryan

Institute, University of Galway, Galway, Ireland

^c Key Laboratory for Power Machinery and Engineering of M. O. E., Shanghai Jiao Tong

University, Shanghai 200240, PR China

^d School of Astronautics, Beihang University, Beijing 100191, PR China

E-mail address: chongwen.zhou@universityofgalway.ie (C.-W. Zhou)

Contents

Section 1: T1 diagnostic values for reactants, transition states, and products calculated in this work.

Section 2: Species and structures of some reactants and products identified calculated in this work.

Table S1
T1 diagnostic values for reactants, transition states, and products calculated in this work.

Species	T1	Species	T1
HO ₂	0.038	H_2O_2	0.010
2-Methyl-1-butanol+HO ₂ radical		1,2-Dimethyl-1-propanol+HO ₂ radical	
CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	0.009	CH ₃ CH(CH ₃)CH(CH ₃)OH	0.009
TS-δ _p	0.022	TS-γ _p	0.022
ĊH ₂ CH ₂ CH(CH ₃)CH ₂ OH	0.010	ĊH ₂ CH(CH ₃)CH(CH ₃)OH	0.010
TS-γ _s	0.019	TS-β _t	0.017
CH ₃ ĊHCH(CH ₃)CH ₂ OH	0.011	CH ₃ Ċ(CH ₃)CH(CH ₃)OH	0.011
TS-β _t	0.017	TS-α _t	0.019
CH ₃ CH ₂ Ċ (CH ₃)CH ₂ OH	0.012	CH ₃ CH(CH ₃)Ċ(CH ₃)OH	0.014
$TS-\gamma_p$	0.022	TS-β _p	0.022
CH ₃ CH ₂ CH(ĊH ₂)CH ₂ OH	0.010	CH ₃ CH(CH ₃)CH(ĊH ₂)OH	0.011
TS-α _s	0.017	TS-OH	0.072
CH ₃ CH ₂ CH(CH ₃)ĊHOH	0.014	CH ₃ CH(CH ₃)CH(CH ₃)Ò	0.017
TS-OH	0.073	3-Methyl-1-butanol +H0	D ₂ radical
CH ₃ CH ₂ CH(CH ₃)CH ₂ O	0.016	CH ₃ CH(CH ₃)CH ₂ CH ₂ OH	0.009
1,1-Dimethyl-1-propanol+	HÖ ₂ radical	TS-δ _p	0.022
CH ₃ CH ₂ C(CH ₂)(CH ₃)OH	0.009	CH ₃ CH(ĊH ₂)CH ₂ CH ₂ OH	0.010
TS-γ _p	0.022	TS-γ _t	0.015
ĊH ₂ CH ₂ C(CH ₃) ₂ OH	0.010	CH ₃ Ċ(CH ₃)CH ₂ CH ₂ OH	0.012
$TS-\beta_s$	0.020	TS-β _s	0.020
CH ₃ ĊHC(CH ₃) ₂ OH	0.011	CH ₃ CH(CH ₃)ĊHCH ₂ OH	0.011
$TS-\beta_p$	0.021	TS-α _s	0.018
$CH_3CH_2C(\dot{C}H_2)(CH_3)OH$	0.011	CH ₃ CH(CH ₃)CH ₂ ĊHOH	0.014
TS-OH	0.076	TS-OH	0.145
$CH_3CH_2C(CH_3)_2\dot{O}$	0.016	CH ₃ CH(CH ₃)CH ₂ CH ₂ O	0.016
2,2-Dimethyl-1-propanol+HO ₂ radical			
CH ₃ C(CH ₃) ₂ CH ₂ OH	0.009		
TS-γ _p	0.022		
ĊH ₂ C(CH ₃) ₂ CH ₂ OH	0.011		
TS-α _s	0.017		
CH ₃ C(CH ₃) ₂ ĊHOH	0.014		
TS-OH	0.064		
CH ₃ C(CH ₃) ₂ CH ₂ O	0.016		

Table S2
Species and structures of some reactants and products identified calculated in this work.

Species Species Species	Molecular structure
CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	H_3 C H_2 H_2 H_3 C C C C C C C C C C
CH₃CH₂CH(CH₃)CH₂Ó	H ₂ H ₂ C C C C C C C C C C C C C C C C C C C
CH₃CH₂CH(CH₃)ĊHOH	H ₂ H C OH C C C C C C C C C C C C C C C C
CH₃CH₂Ċ(CH₃)CH₂OH	H_3C C C C C C C C C C
CH₃CH₂CH(ĊH₂)CH₂OH	H_{2} H_{2} C H C OH C
CH ₃ ĊHCH(CH ₃)CH ₂ OH	H ₃ C C OH CH ₃

ĊH ₂ CH ₂ CH(CH ₃)CH ₂ OH	H_2 H_2 H_2 H_2 H_2 H_3 H_2 H_3
CH ₃ CH ₂ C(CH ₃) ₂ OH	H_3C C C C C C C C C C
CH₃CH₂C(CH₃)₂Ö	H ₃ C C C O O
CH ₃ CH ₂ C(ĊH ₂)(CH ₃)OH	H_3C C C C C C C C C C
CH₃ĊHC(CH₃)₂OH	CH ₃ CH ₃ H ₃ C C OH
ĊH ₂ CH ₂ C(CH ₃) ₂ OH	H ₂ C C OH
CH₃CH(CH₃)CH(CH₃)OH	H ₃ C H C OH C H C C H ₃

CH ₃ CH(CH ₃)CH(CH ₃)Ö	H ₃ C H C O CH ₃
CH ₃ CH(CH ₃)Ċ(CH ₃)OH	H ₃ C H C OH CH ₃
CH₃CH(CH₃)CH(ĊH₂)OH	H ₃ C H C OH CH ₃
CH₃Ċ(CH₃)CH(CH₃)OH	H ₃ C CH ₃ CC OH CH ₃
ĊH ₂ CH(CH ₃)CH(CH ₃)OH	CH ₃ H ₃ C H C H OH C CH ₂
CH ₃ CH(CH ₃)CH ₂ CH ₂ OH	CH ₃ H ₂ CCC HCCOH

CH₃CH(CH₃)CH₂CH₂Ó	CH ₃ H ₂ CCCCO*
CH₃CH(CH₃)CH₂ĊНОН	CH ₃ H ₃ C H C OH
CH₃CH(CH₃)ĊHCH₂OH	CH ₃ H ₂ C C C OH H
CH₃Ċ(CH₃)CH₂CH₂OH	H_3C C C C C C C C C C
CH₃CH(ĊH₂)CH₂CH₂OH	H_3C H_2 H_4 H_5 H_5 H_6 H_7 H_8
CH ₃ C(CH ₃) ₂ CH ₂ OH	H ₃ C H ₂ H ₃ C OH
CH ₃ C(CH ₃) ₂ CH ₂ Ó	H_3C H_2 H_3C C C O

CH₃C(CH₃)₂ĊHOH	H ₃ C H H ₃ C OH
ĊH ₂ C(CH ₃) ₂ CH ₂ OH	H ₃ C H ₂ H ₂ C OH