Study on the Growth Mechanism of Monolayer and Few-Layer Hexagonal Boron

Nitride Films on Copper Foil

Mingyuan Wang,*a Guiwu Liu,^b Shuangying Lei,*a and Neng Wan*a

^aKey Laboratory of MEMS of Ministry of Education, School of Integrated Circuits, Southeast

University, Nanjing, 210096, China;

^bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China

Fig. S1 Initial and final structures of H atom bond to (a, b) N and (c, d) B atoms at the ZZ edge of h-BN on Cu(111). Initial and final structures of H atom bond to (e, f) B and (g, h) N atoms at the AC edge of h-BN on Cu(111). The green, silvery, white and blue balls represent the B, N, H and Cu atoms, respectively. The red dashed circles represent the diffusion process of the marked atoms.

Fig. S2 (a-d) Schematic diagram for H atom desorption from the B and N atoms for BN-ZZ-H and BN-AC-H. The green, silvery, white and blue balls represent the B, N, H and Cu atoms, respectively. The red dashed circles and yellow arrows represent the diffusion process of the marked atoms.

Fig.S3 (a-h) Diagram for the diffusion of B and N atoms along subsurface for BN-ZZ, BN-AC, BN-ZZ-H and BN-AC-H. (i-l) Diagram for the diffusion of B and N atoms from subsurface to surface for BN-ZZ and BN-ZZ-H. The green, silvery, white and blue balls represent the B, N, H and Cu atoms, respectively. The red dashed circles and yellow arrows represent the diffusion process of the marked atoms.

Table S1 Growth of h-BN on copper substrate under different conditions

Ref	Substrate	Pressure regime	Growth temperatur e	Precursor	Atmospher e	Results	Torr
1	Polycrystalli ne Cu foil	Atmospheri c pressure	1000° C	Ammonia- borane 120– 130 °C	Ar: H ₂ =170: 30 sccm	2–5 layer film	760
2	Cu foil	Atmospheri c pressure	1000 °C	Borazine	H ₂ =2000sccm	2 to ~20 nm thick film	760
3	Polycrystalli ne Cu foil	Atmospheri c pressure	1000 °C	Ammonia- borane, 110– 130℃	Ar: H ₂ = 80: 20 sccm	6–8 layer film	760
4	Cu foil	~500 Torr	950 ℃	Ammonia- borane, 130 $^\circ\!\!\mathbb{C}$	Ar: H ₂ = 300: 50 sccm	5-layer	500
5	Cu foil	Atmospheri c pressure	1050° C	Ammonia- borane, 5 mg, 60℃	Ar: H ₂ =170: 30 sccm	1–2.2 nm thick film	760
6	Cu (solid and molten Cu on W)	Atmospheri c pressure	1000° C 1100° C	Ammonia- borane, 110 $^\circ\!\!\mathbb{C}$	Ar: H ₂ =90: 10 sccm	1–10 layers	760
7	Polycrystalli ne Cu foil	Atmospheri c pressure	1030° C	Ammonia- borane, 60– 90℃	N ₂ : H ₂ = 180: 20 sccm	Monolayer film	760
8	Cu foil	Atmospheri c pressure	1020° C	Ammonia- borane, 8.5mg, 80–100 ℃	Ar: H ₂ = 95: 5 sccm	~3 nm thick film	760
9	Cu foil	Atmospheri c pressure	1030° C	Ammonia- borane, 80 $^\circ\!$	20-mTorr air and 10- sccm H ₂	~3 nm thick film	760
10	Cu foil	Low pressure	1000° C	Ammonia- borane, 55– 120℃	Ar: H ₂ = 50: 50 sccm	Monolayer film	0.5
11	Cu foil	∼10 ^{–6} mbar	≈ 950– 1000°C	Borazine, 1 × 10^{-4} to 5 × 10^{-3} mbar	H ₂ (~0.2 mbar)	Monolayer films	7.5*10 ⁻⁷
12	Cu foil	350 mTorr	1000° ℃	Ammonia- borane, 60– 90℃	H ₂ , 10 sccm (350 mTorr)	Monolayer film and islands	0.35
13	Polycrystalli ne Cu foil	30–40 Pa	1000 ℃	Ammonia- borane, 90– 100 °C	Ar, 40 sccm	Monolayer film	0.3
14	Cu foil	400 mTorr	1050%	Ammonia-	H ₂ ,100	Monolayer	0.4

				borane, 130℃	sccm	film	
15	Cu foil	30–40 Pa	1000 °C	Ammonia- borane, 50, 70, 90, and 110℃	Different ratio of Ar and H ₂	Monolayer film and islands	0.3
16	Polycrystalli ne Cu foil	UHV, base pressure < 10 ⁻⁷ mbar	1000 ℃	Ammonia- borane, 15 mg	H ₂ , 10 sccm	Monolayer islands	7.5*10 ⁻⁸
17	Cu foil	Low pressure	1050 ℃	Ammonia- borane, 100 $^\circ\!\!\mathbb{C}$	H ₂ , 15 sccm	Monolayer film	0.5
18	Polycrystalli ne Cu foil	Low- pressure	1050° C	Ammonia- borane, 2– 3mg, 75–85℃	H ₂ , 40 sccm	Monolayer islands	0.5
19	Cu foi	Low- pressure	1050° C	Borazine	Ar: H ₂ = 70: 100 sccm	Monolayer film	0.5
20	single- crystal Cu (110) foil	low pressure (about 200 Pa)	1,035 ℃	Ammonia borane 65 $^\circ\!$	Ar: H ₂ = 5: 45 sccm	single- crystal monolayer	1.5
21	Cu (111) films deposited on sapphire	low- pressure 5.0 torr	1,050 °C	Ammonia borane, roughly 60 mg, 85 ℃	H ₂ , 30 sccm	single- crystal monolayer	5

REFERENCES

1. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I Yakobson, P. M. Ajayan, *Nano Lett.*, 2010, *10*, 3209-3215.

2. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, *Nano Lett.*, 2012, *12*, 161-166.

3. K. H. Lee, H. Shin, J. Lee, I. Lee, G. Kim, J. Choi, S. Kim, Nano Lett., 2012, 12, 714-718.

4. W. Lin, V. W. Brar, D. Jariwala, M. C. Sherrott, W. Tseng, C. Wu, N. Yeh, H. A. Atwater, *Chem. Mater.*, 2017, *29*, 4700-4707.

5. R. Y. Tay, X. Wang, S. H. Tsang, G. C. Loh, R. S. Singh, H. Li, G. Mallick, E. H. Tong *J.* Teo, *Mater. Chem. C*, 2014, *2*, 1650-1657.

6. M. H. Khan, Z. Huang, F. Xiao, G. Casillas, Z. Chen, P. J. Molino, H. K. Liu, *Sci. Rep.*, 2015, *5*, 7743.

7. K. Sridhara, B. N. Feigelson, J. A. Wollmershauser, J. K. Hite, A. Nath, S. C. Hernández, M. S. Fuhrer, D. K. Gaskill, *Cryst. Growth Des.*, 2017, *17*, 1669-1678.

8. J. Fernandes, T. Queirós, J. Rodrigues, S. S. Nemala, A. P. LaGrow, E. Placidi, P. Alpuim, J. B. Nieder, A. Capasso, *FlatChem*, 2022, *33*, 100366.

9. W. Lin, P. Zhuang, D. Akinwande, X. Zhang, W. Cai, Applied Physics Letters 2019, 115, 073101.

10. X. Song, J. Gao, Y. Nie, T. Gao, J. Sun, D. Ma, Q. Li, Y. Chen, C. Jin, A. Bachmatiuk, M. H. Rümmeli, F. Ding, Y. Zhang, Z. Liu, *Nano Res.* 2015, *8*, 3164-3176.

11. P. R. Kidambi, R. Blume, J. Kling, J. B. Wagner, C. Baehtz, R. S. Weatherup, R. Schloegl, B. C. Bayer, S. Hofmann, *Chem. Mater.*, 2014, *26*, 6380-6392.

12. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano, 2012,

6, 8583-8590.

13. N. Guo, J. Wei, L. Fan, Y. Jia, D. Liang, H. Zhu, K. Wang, D. Wu, *Nanotechnology*, 2012, 23, 415605.

14. J. Han, J. Lee, H. Kwon, J. Yeo, Nanotechnology, 2014, 25, 145604.

15. L. Wang, B. Wu, L. Jiang, J. Chen, Y. Li, W. Guo, P. Hu, Y. Liu, Adv. Mater., 2015, 27, 4858-4864.

16. G. E. Wood, A. J. Marsden, J. J. Mudd, M. Walker, M. Asensio, J. Avila, K. Chen, G. R. Bell, N. R. Wilson, *2D Mater.*, 2015, *2*, 025003.

17. Y. Wen, X. Shang, J. Dong, K. Xu, J. He, C. Jiang, Nanotechnology, 2015, 26, 275601.

18. D. Zhang, F. Wu, Q. Ying, X. Gao, N. Li, K. Wang, Z. Yin, Y. Cheng, G. Meng, *J. Mater. Chem. C*, 2019, *7*, 1871-1879.

19. Q. Wu, J. Park, S. Park, S. J. Jung, H. Suh, N. Park, W. Wongwiriyapan, S. Lee, Y. H. Lee, Y. J. Song, *Sci. Rep.*, 2015, *5*, 16159.

20. L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z. Wang, F. Ding, K. Liu, *Nature*, 2019, *570*, 91-95.

21. T. Chen, C. Chuu, C. Tseng, C. Wen, H. S. P. Wong, S. Pan, R. Li, T. Chao, W. Chueh, Y. Zhang, Q. Fu, B. I. Yakobson, W. Chang, L. Li, *Nature*, 2020, *579*, 219-223.