Supporting Information

Insights into the specific feature of electrostatic recognition binding mechanism between BM2 and BM1: A molecular dynamics simulations study

Guixuan Xing^b, Qingchuan Zheng^{a,b*}

^aSchool of Pharmaceutical Sciences, Jilin University, Changchun, 130023, China

^bInstitute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun,

130023, China

*Corresponding authors

E-mail addresses: zhengqc@jlu.edu.cn (Qingchuan Zheng).

FIGURE CAPTIONS

Figure S1 Initial model and distance monitoring of the BM2-BM1 complex.

Figure S2 The Root Mean Square Fluctuation of the residue backbone atoms.

Figure S3 B-factor analysis of the complex system. Close to red indicates that the residue is more flexible, and close to blue indicates that the residue is more stable.

Figure S4 Distance between negatively charged O atoms and positively charged N atoms in the R1 region of the Wild-Type system.

Figure S5 Distance between negatively charged O atoms and positively charged N atoms in the R2 region of the Wild-Type system.

Figure S6 Distance between negatively charged O atoms and positively charged N atoms in the R3 region of the Wild-Type system.

Figure S7 RMSD as a function of time for three groups of mutant systems and RMSF values of four systems.

Figure S8 Free energy landscape of the 92-94A system. The star marks the lowest energy conformation of the system.

Figure S9 The distance between the C terminal residue of the chain A and the chain D of BM1 protein and the charged residues in the R1 region.

Figure S10 The distance between the charged residue atoms in the R1' region of the 92-94A system.

Figure S11 The distance between the charged residue atoms in the R2 region of the 92-94A system.

Figure S12 The distance between the charged residue atoms in the R3 region of the 92-94A system.

Figure S13 Free energy landscape of the 89-91A system. The star marks the lowest energy conformation of the system.

Figure S14 The distance between the charged residue atoms in the 89-91A system.

Figure S15 Free energy landscape of the 98-100A system. The star marks the lowest energy conformation of the system.

Figure S16 Distance between negatively charged O atoms and positively charged N atoms in the R1 region of the 98-100A system.

Figure S17 Distance between negatively charged O atoms and positively charged N atoms in the R2 and R3 region of the 98-100A system.

Figure S1 Initial model and distance monitoring of the BM2-BM1 complex.

Figure S2 The Root Mean Square Fluctuation of the residue backbone atoms.

Figure S3 B-factor analysis of complex system. Close to red indicates that the residue is more flexible, and close to blue indicates that the residue is more stable.

Figure S4 Distance between negatively charged O atoms and positively charged N atoms in the R1 region of the Wild-Type system.

Figure S5 Distance between negatively charged O atoms and positively charged N atoms in the R2 region of the Wild-Type system.

Figure S6 Distance between negatively charged O atoms and positively charged N atoms in the R3 region of the Wild-Type system.

Figure S7 RMSD as a function of time for three groups of mutant systems and RMSF values of four systems.

Figure S8 Free energy landscape of the 92-94A system. The star marks the lowest energy conformation of the system.

Figure S9 The distance between the C terminal residue of the chain A and the chain D of BM1 protein and the charged residues in the R1 region.

Figure S10 The distance between the charged residue atoms in the R1' region of the 92-94A system.

Figure S11 The distance between the charged residue atomsin the R2 region of the 92-94A system.

Figure S12 The distance between the charged residue atoms in the R3 region of the 92-94A system.

Figure S13 Free energy landscape of the 89-91A system. The star marks the lowest energy conformation of the system.

Figure S14 The distance between the charged residue atoms in the 89-91A system.

Figure S15 Free energy landscape of the 98-100A system. The star marks the lowest energy conformation of the system.

Figure S16 Distance between negatively charged O atoms and positively charged N atoms in the R1 region of the 98-100A system.

Figure S17 Distance between negatively charged O atoms and positively charged N atoms in the R2 and R3 region of the 98-100A system.

TABLE LISTS

Table S1 The binding free energies (kcal·mol⁻¹) contributed by key residues ($\Delta G_{\text{bind}} \leq$ -2.0 kcal·mol⁻¹) in the Wild-Type system.

Table S2 Occupancy of hydrogen bond interactions in the three regions of BM2 andBM1 binding interface in the Wild-Type system.

Table S3 The binding free energy and its components (kcal·mol-1) of the Wild-Type system and three mutation complex systems (92-94A, 89-91A, 98-100A).

Table S4 Table S4 The binding free energies (kcal·mol⁻¹) contributed by key residues $(\Delta G_{\text{bind}} \leq -2.0 \text{ kcal·mol}^{-1})$ in the 92-94A system.

Table S5 Occupancy of hydrogen bond interactions in the four regions of BM2 andBM1 binding interface in the 92-94A system.

Table S6 The binding free energies (kcal·mol⁻¹) contributed by key residues ($\Delta G_{bind} \leq$ -2.0 kcal·mol⁻¹) in the 89-91A system.

Table S7 Occupancy of hydrogen bond interactions in the four regions of BM2 andBM1 binding interface in the 89-91A system.

Table S8 The binding free energies (kcal·mol⁻¹) contributed by key residues

 $(\Delta G_{\text{bind}} \leq -2.0 \text{ kcal} \cdot \text{mol}^{-1})$ in the 98-100A system.

Table S9 Occupancy of hydrogen bond interactions in the four regions of BM2 andBM1 binding interface in the 98-100A system.

	Residue	ΔE_{vdW}	ΔE _{ele}	ΔE_{polar}	ΔE_{nonpol}	ΔE_{total}
	$E94_B$	-1.73	-113.96	98.11	-0.59	-18.17
	$E104_B$	0.61	-92.15	85.77	-0.26	-6.03
	E93 _B	0.25	-65.45	60.45	-0.01	-4.77
	$I87_A$	-3.73	-3.34	3.76	-0.34	-3.65
	L90 _D	-3.54	1.85	-1.07	-0.58	-3.34
BM2	$L85_D$	-1.22	-7.97	6.43	-0.36	-3.12
	T101 _C	-3.12	-5.06	5.74	-0.66	-3.10
	$I85_A$	-3.27	1.15	0.11	-0.62	-2.64
	$L60_B$	-2.72	-7.09	7.54	-0.29	-2.55
	E94 _C	-1.28	-73.09	72.51	-0.46	-2.32
	R105 _{BM1}	-0.83	-312.86	303.95	-0.58	-10.32
	R101 _{BM1}	-3.45	-292.52	288.57	-0.70	-8.11
	M86 _{BM1}	-3.98	-3.38	3.99	-0.81	-4.17
	R50 _{BM1}	-1.78	-181.06	179.22	-0.45	-4.08
	I97 _{BM1}	-3.64	-0.03	0.50	-0.66	-3.82
BM1	K102 _{BM1}	-2.07	-323.01	322.60	-0.68	-3.16
	R77 _{BM1}	-0.10	-206.77	203.99	-0.17	-3.06
	T53 _{BM1}	-1.90	-5.87	5.08	-0.32	-3.00
	H119 _{BM1}	-3.58	-5.59	6.64	-0.37	-2.90
	E120 _{BM1}	-4.33	-252.49	254.86	-0.50	-2.46
	K47 _{BM1}	-0.84	-190.47	189.32	-0.19	-2.18
	L96 _{BM1}	-2.14	-1.72	2.22	-0.43	-2.08

Table S1 The binding free energies (kcal·mol⁻¹) contributed by key residues $(\Delta G_{bind} \leq -2.0 \text{ kcal·mol}^{-1})$ in the Wild-Type system.

	Acceptor	Donor	AvgDist	Occupied (%)
	E94 _B @OE1	R105 _{BM1} @NH2	2.77	67.75
	E94 _B @OE1	R101 _{BM1} @NH2	2.78	65.61
	E94 _B @OE2	K102 _{BM1} @NZ	2.78	27.11
RI Region	$E88_B@O$	K102 _{BM1} @NZ	2.78	8.63
	G89 _B @O	H119 _{BM1} @NE2	2.85	46.47
	$E104_B@OE2$	R101 _{BM1} @NH2	2.78	34.88
	S91 _B @O	K94 _{BM1} @NZ	2.88	1.09
R2 Region	I85 $_D$ @O	K93 _{BM1} @NZ	2.80	15.74
	E94 _C @OE1	M86 _{BM1} @N	2.84	31.22
R3 Region	T101 _C @O	$D54_{BMI}@N$	2.86	48.18
	E104 _C @OE2	C51 _{BMI} @N	2.84	7.36

Table S2 Occupancy of hydrogen bond interactions in the three regions of BM2 andBM1 binding interface in the Wild-Type system.

System	BM2-BM1 complex system	92-94A System	89-91A System	98-100A System			
ΔE_{ele}	-1885.00	-2083.35	-1372.76	-1293.03			
ΔE_{vdW}	-146.36	-133.70	-89.89	-109.65			
ΔG_{SA}	-23.24	-22.30	-13.75	-16.81			
ΔG_{GB}	1958.80	2124.74	1431.43	1353.07			
$\Delta {G_{pol}}^a$	73.80	41.39	58.68	60.05			
$\Delta {G_{nonpol}}^{b}$	-169.61	-156.01	-103.64	-126.47			
$\Delta G_{\text{MM-}}$	-95.80	-114.63	-44.96	-66.42			
GBSA ^c							
$T\Delta S$	-91.89	-81.95	-53.15	-58.01			
$\Delta G_{binding}{}^d$	-3.92	-32.68	8.18	-8.42			

Table S3 The binding free energy and its components (kcal·mol⁻¹) of the Wild-Type system and three mutation complex systems (92-94A, 89-91A, 98-100A).

 ${}^{a}\Delta G_{pol} = \Delta E_{ele} + \Delta G_{GB}$

 $^{b}\Delta G_{nonpol} = \Delta E_{vdW} + \Delta G_{SA}$

 $^{c}\Delta G_{MM\text{-}GBSA\,=\,}\Delta E_{ele} + \Delta E_{vdW} + \Delta G_{GB} + \Delta G_{SASA}$

 $^{d}\Delta G_{binding} = \Delta G_{MM-GBSA} - T\Delta S$

	Residue	ΔE_{vdW}	ΔE_{ele}	ΔE_{polar}	ΔE_{nonpol}	ΔE_{total}
	K97 _A	-1.086	-92.578	82.672	-0.77124	-11.7632
	L90 _C	-5.641	-4.7407	4.4405	-0.92022	-6.86142
	H109 _A	-0.7095	-63.312	59.9268	-0.28658	-4.38128
	$E100_B$	-0.9579	-50.6247	48.0381	-0.26547	-3.80997
	L90 _D	-1.8789	-7.7803	6.3729	-0.44666	-3.73296
BM2	E106 _C	0.7936	-65.2047	60.9972	-0.28609	-3.69999
	$L108_A$	-1.381	-10.7907	9.2267	-0.33961	-3.28461
	$I85_A$	-2.8074	1.391	-1.0981	-0.56293	-3.07743
	D83 _C	0.2872	-88.3939	85.4739	-0.14406	-2.77686
	$L60_B$	-2.8577	-4.1112	4.6166	-0.3622	-2.7145
	E106 _D	-0.6344	-79.3482	78.3392	-0.36713	-2.01053
	R74 _{BM1}	0.4234	-201.2	189.8906	-0.73443	-11.6202
	R105 _{BM1}	-0.8845	-263.455	253.5649	-0.69236	-11.4665
	R77 _{BM1}	-4.6987	-196.791	193.8819	-0.85752	-8.46562
	R101 _{BM1}	-3.3305	-234.46	233.0921	-0.99148	-5.68958
	H119 _{BM1}	-3.0676	-10.824	11.0654	-0.43986	-3.26606
BM1	E81 _{BM1}	-3.8425	-140.8904	-139.423	-0.50025	-2.87575
	К93 _{ВМ1}	-2.6392	-261.173	261.9647	-0.8685	-2.7162
	I97 _{BM1}	-3.1571	-0.5191	1.5432	-0.46824	-2.60124
	K97 _{BM1}	-3.6486	8.4641	-6.7214	-0.53969	-2.44559
	K47 _{BM1}	-0.2886	-170.051	168.4381	-0.35909	-2.26099
	L98 _{BM1}	-2.1612	1.8997	-1.6133	-0.14572	-2.02052

Table S4 The binding free energies (kcal·mol⁻¹) contributed by key residues $(\Delta G_{bind} \leq -2.0 \text{ kcal·mol}^{-1}) \text{ in the 92-94A system.}$

	Acceptor	Donor	AvgDist	Occupied (%)
	H109 _A @OXT	R105 _{BM1} @NH2	2.76	43.80
R1 Region	H109 _A @OXT	$K102_{BMI}@NZ$	2.77	9.97
	E106 _D @OXT	R101 _{BM1} @NH1	2.81	38.60
	$S91_A@N$	E120 _{BM1} @OE2	2.94	1.03
R1' Region	$K97_A@NZ$	E117 _{BM1} @OE2	2.91	2.07
	$K97_A@NZ$	E114 _{BM1} @OE1	2.84	0.04
	L90 _C @O	T89 _{BM1} @N	2.77	15.07
R2 Region	L90 _C @O	K92 _{BM} @NZ	2.82	4.16
	K97 _C @HD2	E81 _{BM1} @OE1	2.95	0.55
	E104 _C @OE1	R76 _{BM1} @NH1	2.78	1.83
R3 Region	$E104_{C}@OE1$	R4 _{BM1} @NH1	2.77	10.9
C	E106 _C @O	R74 _{BM1} @NH2	2.78	27.55
	E100 _C @O	R77 _{BM1} @NH1	2.84	41.97

Table S5 Occupancy of hydrogen bond interactions in the four regions of BM2 andBM1 binding interface in the 92-94A system.

	Residue	ΔE_{vdW}	ΔE_{ele}	ΔE_{polar}	ΔE_{nonpol}	ΔE_{total}
	A91 _B	-1.19145	-6.8308	4.05429	-0.37613	-4.3441
	$G88_B$	-1.95628	-19.5339	18.18634	-0.60464	-3.90844
	M98 _D	-3.55294	-1.41872	2.49405	-0.76113	-3.23874
BM2	195 _D	-2.78152	-0.93961	1.26042	-0.42306	-2.88376
	I87 _D	-2.38734	0.3183	0.09765	-0.52793	-2.49932
	A90 _B	-1.85181	-0.70662	0.68129	-0.206	-2.08313
	K105 _{BM1}	-0.81712	-196.219	193.3244	-0.43916	-4.15077
BM1	T87 _{BM1}	-2.44024	-2.54994	3.16956	-0.47521	-2.29582
	K101 _{BM1}	-4.38663	-232.862	236.0125	-1.01897	-2.25526

Table S6 The binding free energies (kcal·mol⁻¹) contributed by key residues $(\Delta G_{bind} \leq -2.0 \text{ kcal·mol}^{-1}) \text{ in the 89-91A system.}$

	Acceptor	Donor	AvgDist	Occupied (%)
	$E88_B@OE2$	E114 _{BM1} @OE2	2.86	0.02
	A89 _B @O	R105 _{BM1} @NH1	2.83	5.16
R1 Region	A90 _B @O	R101 _{BM1} @NH2	2.83	7.54
	A91 _B @O	R101 _{BM1} @NH2	2.81	69.09
	A93 _B @OE2	R105 _{BM1} @NH2	2.79	28.61
	S82 _B @O	K94 _{BM1} @NZ	2.83	4.73
R2 Region	$D83_D@OD2$	K93 _{BM1} @NZ	2.79	6.18
	$E94_D@O$	Y126 _{BM1} @OH	2.80	5.37
R3 Region	$E94_D@OE1$	T80 _{BM1} @OG1	2.69	6.57
	E94 _D @OE1	$K75_{BMI}@NZ$	2.78	6.45

Table S7 Occupancy of hydrogen bond interactions in the four regions of BM2 andBM1 binding interface in the 89-91A system.

	Residue	ΔE_{vdW}	ΔE_{ele}	ΔE_{polar}	ΔE_{nonpol}	ΔE_{total}
	$E94_B$	-0.91	-102.93	95.72	-0.52	-8.63
	$E88_D$	-1.02	-69.52	64.18	-0.25	-6.61
	$D83_A$	-2.11	-76.55	74.26	-0.55	-4.96
	M98 _D	-4.35	0.06	0.77	-0.68	-4.22
	$I85_A$	-3.67	-0.87	1.52	-0.80	-3.83
BM2	V102 _D	-4.58	2.05	-0.55	-0.68	-3.76
	$L60_B$	-3.54	-1.01	1.47	-0.57	-3.65
	$M98_B$	-2.86	0.82	-0.35	-0.53	-2.92
	195 _D	-2.68	-0.32	0.59	-0.39	-2.79
	T89 _{BM1}	-4.21	-13.31	10.68	-0.79	-7.62
	R101 _{BM1}	-4.22	-189.42	188.69	-0.81	-5.76
	R105 _{BM1}	0.42	-181.55	175.93	-0.15	-5.36
DV(1	T87 _{BM1}	-2.37	-9.06	8.23	-0.39	-3.59
BWI	I97 _{BM1}	-2.77	-2.14	2.77	-0.51	-2.65
	K75 _{BM1}	-0.84	-149.06	147.89	-0.38	-2.39
	A90 _{BM1}	-2.53	-2.38	3.27	-0.49	-2.13

Table S8 The binding free energies (kcal·mol⁻¹) contributed by key residues $(\Delta G_{bind} \leq -2.0 \text{ kcal·mol}^{-1}) \text{ in the 98-100A system.}$

	Acceptor	Donor	AvgDist	Occupied (%)
	$E94_B@OE2$	R105 _{BM1} @NH1	2.80	92.16
	E94 _B @OE1	R101 _{BM1} @NH1	2.76	92.12
	$E94_B@OE2$	$K102_{BMI}@NZ$	2.78	24.84
R1 Region	$E93_B@OE2$	$K102_{BMI}@NZ$	2.78	20.33
	$E88_B@OE1$	$K102_{BMI}@NZ$	2.84	8.36
	E106 _B @OE1	R101 _{BM1} @NH2	2.77	55.23
	H109 _B @OXT	R104 _{BM1} @NH1	2.80	40.92
	$G89_D@O$	K93 _{BM1} @NZ	2.81	14.71
	$D83_B@OD2$	$K94_{BMI}@NZ$	2.80	0.64
K2 Region	I95 _D @O	T89 _{BM1} @OG1	2.77	66.39
	$E88_C@O$	T88 _{BM1} @OG1	2.77	67.20
	H109 _C @NE2	G81 _{BM1} @OE1	2.81	0.18
R3 Region	T101 _C @OG1	$D54_{BMI}@N$	2.90	40.06
	E106 _C @OE2	R50 _{BM1} @NH2	2.82	42.52

Table S9 Occupancy of hydrogen bond interactions in the four regions of BM2 and BM1 binding interface in the 98-100A system.