Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

for

From 'halogen' to 'tetrel' bond: Matrix isolation IR spectroscopic and quantum mechanical studies on effect of central atom substitution in donor tetrahalogens on binary complex formation with formic acid

Indrani Bhattacharya^a and Pujarini Banerjee*^b

- a) Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, West Bengal, India
- b) Department of Chemistry, Diamond Harbour Women's University, Sarisha, West Bengal, India

*Email: pujarini.banerjee87@gmail.com

Figure S1: Infrared spectra in the v_{O-H} region of Formic Acid (FA) depicting complex formation with SiCl₄ in Argon matrix. Trace I (black) depicts the SiCl₄ monomer (SiCl₄:Ar = 1:200) after annealing the matrix. Trace II (blue) depicts FA monomer (FA:Ar = 1:2000) after annealing. Traces III (green), IV (violet) and V (wine) depict FA- SiCl₄ mixtures in different concentration ratios (FA:SiCl₄:Ar = 1:2:2000, 1:5:2000 and 1:10:2000, respectively) after annealing. The positions of newly developed bands corresponding to formation of the FA-SiCl₄ complex have been marked with dotted lines.

Figure S2: Optimized geometries and binding energies (ΔE_{bind}) of different conformers of the FA-CCl₄ complex (1:1) calculated at the M062X/6-31G++(d,p) level of theory. Relevant distance parameters are depicted in the figure.

Figure S3: Infrared spectra in the v_{Si-Cl} region of SiCl₄ for different concentrations of FA and SiCl₄ in Argon matrix (mentioned in the figure). "Dep-off" refers to the spectra of the asdeposited matrix.

Figure S4: Optimized geometries of some of the conformers of the 1:2 FA-SiCl₄ complex calculated at M062X/6-31G++(d,p) level of theory with their corresponding $v_{C=O}$ spectral shift and binding energies (ΔE_{bind}). Different distance parameters have been also shown in the figure.

Table S1: Predictions of binding energy and geometry as well as relevant data from AIM and NBO analyses obtained at MP2/6-31G++(d,p) level of theory for optimized structures of FA-SiCl₄ complexes.

Predicted parameters	Conformer	Conformer	Conformer
(FA-SiCl ₄)	1A 2A		3A
ΔE_{bind} (kcal/mol)	1.3	1.1	0.4
O2…Cl10(Å)	3.47	3.32	-
O2…Cl8(Å)	3.25	3.24	-
02…Cl6(Å)	3.25	3.24	3.27
O2…Si7(Å)	3.35	3.28	5.22
H4…Cl10(Å)	2.52	-	-
H4…Cl8(Å)	-	-	-
H4…Cl6(Å)	-	-	-
Si7-Cl10-O2(deg)	69.4	70.9	-
Si7-Cl8-O2(deg)	75.0	73.0	-
Si7-Cl6-O2(deg)	75.0	73.0	160.6
O3-H4-Cl10(deg)	165.8	-	-
O3-H4-Cl8(deg)	-	-	-
O3-H4-Cl6(deg)	-	-	-
Cl9-Si-O2(deg)	177.1	178.9	-
$\rho_{BCP}(O2\cdots Cl6)(a.u)$	0.0076	0.0078	0.0068
$\rho_{BCP}(O2\cdots Cl8)(a.u)$	0.0076	0.0078	-
$\rho_{BCP}(O2\cdots Cl10)(a.u)$	0.0064	0.0078	-
$\rho_{BCP}(H4\cdots Cl10)(a.u)$	0.0111	-	-
$\rho_{BCP}(H4\cdots Cl6)(a.u)$	-	-	-
$\rho_{\rm BCP}({\rm H4}\cdots{\rm Cl8})({\rm a.u})$	-	-	-
$\rho_{BCP}(O2\cdots Si7)(a.u)$	-	0.0074	-
n(O2)→σ*(Si7-	03	0.43	-
Cl10) (kcal/mol)	0.5	0.43	

$n(O2) \rightarrow \sigma^{*}(Si7\text{-}Cl8)$ (kcal/mol)	0.3	0.39	-
$n(O2) \rightarrow \sigma^{*}(Si7-Cl6)$ (kcal/mol)	0.3	0.39	0.2
$n(O2) \rightarrow \sigma^{*}(C19\text{-}Si7)$ (kcal/mol)	1.67	2.04	-
n(Cl10)→σ*(O3- H4) (kcal/mol)	5.59	-	-
$n(C18) \rightarrow \sigma^{*}(O3-H4)$ (kcal/mol)	-	-	-
$n(C16) \rightarrow \sigma^{*}(O3-H4)$ (kcal/mol)	-	-	-

Table S2: Predictions of binding energy, spectral shifts, geometry, as well as relevant data from AIM and NBO analyses obtained at ω B97XD/6-31G++(d,p) level of theory for optimized structures of FA-SiCl₄ complexes.

Predicted parameters	Conformer	Conformer	Conformer	Conformer	Conformer	Conformer
(FA-SiCl ₄)	1A	1B	2A	2B	3A	3B
ΔE_{bind} (kcal/mol)	2.7	2.7	2.2	2.2	0.8	1.2
$\Delta v_{C=O}(cm^{-1})$	-9	-8	-7	-6	-3	-3
$\Delta v_{C-O} (cm^{-1})$	+15	+15	+9	+8	+3	+7
O2…Cl10(Å)	3.59	3.45	3.44	3.41	-	-
O2…Cl8(Å)	3.43	3.44	3.41	3.43	-	-
O2…Cl6(Å)	3.44	3.59	3.41	3.43	3.13	3.14
O2…Si7(Å)	3.56	3.56	3.46	3.47	5.46	5.30
H4…Cl10(Å)	2.60	-	-	-	-	-
H4…Cl8(Å)	-	-	-	-	-	-
H4…Cl6(Å)	-	2.60	-	-	-	2.73
Si7-Cl10-O2(deg)	72.5	76.3	73.4	74.5	-	-
Si7-Cl8-O2(deg)	76.5	76.5	74.2	74.0	-	-
Si7-Cl6-O2(deg)	76.3	72.6	74.2	74.0	160.1	147.7
O3-H4-C110(deg)	166.6	-	-	-	-	-
O3-H4-Cl8(deg)	-	-	-	-	-	-
O3-H4-Cl6(deg)	-	166.4	-	-	-	165.8
Cl9-Si-O2(deg)	178.2	178.2	180.0	180.0	-	-
$\rho_{BCP}(O2\cdots Cl6)(a.u)$	0.0050	0.0050	0.0057	0.0055	0.0056	-
$\rho_{BCP}(O2\cdots Cl8)(a.u)$	0.0056	0.0056	0.0057	0.0060	-	-
$\rho_{BCP}(O2\cdots Cl10)(a.u)$	0.0050	0.0050	0.0061	0.0060	-	-
$\rho_{BCP}(H4\cdots C110)(a.u)$	0.0094	-	-	-	-	-
$\rho_{BCP}(H4\cdots Cl6)(a.u)$	-	0.0094	-	-	-	0.0074
$\rho_{BCP}(H4\cdots Cl8)(a.u)$	-		-	_	-	-
$\rho_{BCP}(O2\cdots Si7)(a.u)$	-	-	0.0056	0.0056	-	-

n(O2)→σ*(Si7- Cl10) (kcal/mol)	0.15	0.09	0.23	0.17	-	-
$n(O2) \rightarrow \sigma^*(Si7-Cl8)$ (kcal/mol)	0.11	0.11	0.21	0.22	-	-
$n(O2) \rightarrow \sigma^*(Si7-Cl6)$ (kcal/mol)	0.09	0.14	0.21	0.22	0.21	0.08
$n(O2) \rightarrow \sigma^*(C19-Si7)$ (kcal/mol)	0.95	0.95	1.31	1.27	-	-
n(Cl10)→σ*(O3- H4) (kcal/mol)	4.31	-	-	-	-	-
$n(C18) \rightarrow \sigma^*(O3-H4)$ (kcal/mol)	-	-	-	-	-	-
$n(Cl6) \rightarrow \sigma^*(O3-H4)$ (kcal/mol)	-	4.27	-	-	-	2.91

Table S3: Experimental and calculated $v_{C=0}$ and v_{C-0} band positions of FA and their spectral shifts for different conformers of the binary FA-SiCl₄ complex at the M062X/6-311++G(d,p), MP2/6-311++G(d,p) and ω B97XD/6-311++G(d,p) levels of theory.

	Calculated band positions (cm ⁻¹)						Calculated spectral shifts (cm ⁻¹)					
Conformer	M06	5-2X	M	P2	ωB9	7XD	M06	-2X	M	P2	ωB9΄	7XD
	v _{C=O}	ν _{C-O}	v _{C=O}	ν _{C-O}	v _{C=O}	ν _{C-O}	$\Delta \nu_{C=O}$	$\Delta v_{\text{C-O}}$	$\Delta v_{C=0}$	Δv_{C-O}	$\Delta v_{C=O}$	Δv_{C-O}
FA monomer	1879	1169	1807	1143	1859	1163	-	-	-	-	-	-
1A	1862	1190	1800	1161	1847	1177	-17	+21	-7	+18	-12	+14
1B	1863	1182	-	-	1847	1177	-16	+13	-	-	-12	+14
2A	1864	1181	1804	1151	1848	1169	-15	+12	-3	+8	-11	+6
2B	1864	1180	-	-	1849	1169	-15	+11	-	-	-10	+6
3A	1878	1172	1806	1144	1856	1167	-1	+3	-1	+1	-3	+4
3B	-	-	-	-	1856	1169	-	-	-	-	-3	+6

Table S4: Experimental and calculated v_{O-H} band positions of FA in the monomer and different conformers of the binary FA-SiCl₄ complex at the M062X/ 6-31G++(d,p), MP2/6-31G++(d,p) and ω B97XD/6-31G++(d,p) levels of theory.

Conformer	Calcu pos M06-2X	lated v _{O-H} itions (cn MP2	t band n ⁻¹) ωB97XD	Calcula M06-2X	ated specific (cm ⁻¹) MP2	ctral shift ωB97XD	Experimental v_{O-H} band positions	Experimental spectral shift (cm ⁻¹)
FA monomer	3810	3786	3826	-	-	-	3550	-
1A	3768	3754	3774	-42	-32	-52		
1B	3780	-	3775	-30	-	-51		
2A	3808	3782	3826	-2	-4	0	3506	-44
2B	3819	-	3823	+9	-	-3	3523	-27
3A	3798	3784	3824	-12	-2	-2	3548	-2
3B	3785	-	3793	-25	-	-33		