Supporting Information

Proton-coupled electron transfer at a mis-metalated zinc site detected with protein charge ladders.

Mayte Gonzalez, Matthew J. Guberman-Pfeffer, Jordan C. Koone, Chad M. Dashnaw, Travis J. Lato, Bryan F. Shaw*

Department of Chemistry and Biochemistry, Baylor University, Waco, TX

*To whom correspondence should be addressed: <u>bryan_shaw@baylor.edu</u>

Key Words: PCET, superoxide dismutase 1, charge regulation, net charge, copper

Table S1. Metal equivalents of copper per dimeric SOD1, as determined via ICP-MS. Fewer than 0.1 equivalents of metal present per dimer classified protein as "metal free". All experiments were performed in excess copper. The buffer used for capillary electrophoresis was also tested for copper.

pН	Zn: apo WT SOD1	Cu: apo WT SOD1	Cu: WT metallated SOD1	Buffer
	dimer	dimer	dimer	
5.6	0.01	0.04	4.74	-0.03
7.4	-0.05	0.02	4.94	-0.10
8.3	0.01	0.04	4.76	0.02

		Subunit #1		Subunit #2			
Residue	Residue	рV	nV	AnK	рV	nV	AnK
<u>ID</u>		<u>pr_{a,ox}</u>	pr _{a,red}	$\Delta p R_{a,(redox.)}$	$pR_{a,ox}$	pr _{a,red}	$\Delta p R_{a,(redox.)}$
9		11./ Q /	11.0 Q /	-0.7	11.6 9.5	11.5 0 /	-0.1 -0.1
11	Lys). 1 3 8	у. т 3 0	0.0	3.8	у. т 3 8	-0.1
21	Glu	5.0 1.7	3.) 17	0.0	J.0 1.6	J.0 1 3	0.0
21	Una L ve	т.7 10 2	т.7 103	0.0	10.2	10 3	-0.3
23	Glu	10.2	10.5	0.0	10.2	10.5	0.1
24	Una L ve	10.3	10.3	0.0	10.4	10.3	-0.1
36	Lys	9.9	9.8	-0.1	10.4	9.9	-0.1
40	Glu	3.9	3.0	0.0	3.6).) Д Д	0.0
40	His	11.0	11.5	0.0	11.4	11 <i>A</i>	0.9
43 49	Glu	5.1	53	0.5	5.1	5 2	0.0
ربا 52	Δsn	1.5	1.5	0.0	1.4	1 A	-0.1
52 70	Lvs	10.5	10.1	-0.4	0.9	10.7	-0.1
70	Lys Lys	10.5	10.1	-0.4	10.4	10.2	0.0
76	Lys Asn	33	33	0.0	3 3	3.4	0.0
70 77	Glu	5.5 1.5	5.5 1 1	-0.1	5.5 1 1	5. т Л Л	0.2
78	Glu	ч.5 З 7	т.т 37	-0.1	3.8	3.0	0.0
90	Δsn	3.0	3.1	0.0	2 7	3.1	0.0
91	Lvs	10.9	10.9	0.0	10.9	10.8	0.4
92	Lys Asn	5.1	10.J 5 4	0.0	10.7 4 9	5 2	0.0
96	Asp	2.1 4 3	л. Д б	0.3	ч.) 4 б	5.2 Д Д	-0.2
100	Glu	4.0	4.0	0.2	4.0	4.4 4.3	0.2
100	Asn	-1.8	-2.4	-0.7	-3.0	-1.6	1.4
101	Asn	3.4	3.4	0.0	3.3	3.6	0.3
110	His	5.1 7.1	67	-0.3	6.9	7 0	0.2
121	Glu	37	3.9	0.2	3.7	3.8	0.2
121	Lvs	10.2	10.2	-0.1	10.2	10.2	0.1
122	Asn	-1.8	0.8	2.6	-2.3	0.6	2.9
125	Asn	2.5	3.5	1.0	2.6	2.2	-0.4
128	Lvs	10.5	10.7	0.2	10.6	10.7	0.1
132	Glu	3.6	3.8	0.2	3.8	3.9	0.0
133	Glu	4.6	4.6	0.0	4.7	4.9	0.2
136	Lys	10.3	10.3	0.0	10.3	10.3	0.0

Table S2. Computed pKas before and after reducing the Cu ion in the canonical Zn-binding site of SOD1.

Redox State	Zn-Site	Zn-Site	Simulated pH	Simulated	
	Bonded	Non-Bonded		Time (ns)	
	Ligands	Ligands			
$Cu^{+1}Cu^{+2}$	His-63,		-4, -2, 0, 2,	24 ns at each pH	
	His-71,		4, 6, 8, 10, 12		
	His-80,				
	Asp-83				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,		-4, -2, 0, 2,	24 ns at each pH	
	His-71,		4, 6, 8, 10, 12		
	His-80,				
	Asp-83				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-71,	His-63		314	
	His-80,	$(N_{\epsilon} \text{ protonated})$			
	Asp-83				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-71,	His-63		313	
	His-80,	$(N_{\varepsilon} \text{ and } N_{\delta}$			
	Asp-83	protonated)			
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	His-71		308	
	His-80,	$(N_{\epsilon} \text{ protonated})$			
	Asp-83				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	His-71		291	
	His-80,	$(N_{\varepsilon} \text{ and } N_{\delta}$			
	Asp-83	protonated)			
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	His-80		292	
	His-71,	$(N_{\epsilon} \text{ protonated})$			
	Asp-83				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	His-80		382	
	His-71,	$(N_{\varepsilon} \text{ and } N_{\delta}$			
	Asp-83	protonated)			
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	Asp-83		300	
	His-71,	(unprotonated)			
	His-80				
$\mathrm{Cu}^{+1}\mathrm{Cu}^{+1}$	His-63,	Asp-83		331	
	His-71,	(protonated)			
	His-80				

 Table S3. Summary of classical molecular dynamics simulation conditions and timescales.