Switching of Photoinduced Proton Transfer from One Six Member Hydrogen Bonded

Ring to Other: A Molecule of Hydrazine and pH Sensor

VikiBhakta, Nikhil Guchhait*

Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India

*Corresponding author. Tel.: +913323508386; fax: +913323519755

E-mail address: nguchhait@yahoo.com (N. Guchhait)

- 1. Synthesis Procedure of HBO, HBOB, HBON
- 2. Time Correlated Single photon counting (TCSPC)
- 3. Quantum yield
- 4. ¹H NMR of HBO in CDCl₃
- 5. ¹H NMR of HBOB in CDCl₃
- 6. ¹³C NMR of HBOB in CDCl₃
- 7. ESI-MS of HBOB
- 8. ¹H NMR of HBN in CDCl₃
- 9. ¹³C NMR of HBN in CDCl₃
- 10. ¹H NMR of HBON in CDCl₃
- 11. ¹³C NMR of HBON in CDCl₃
- 12. ESI-MS of HBON
- 13. Table for Crystallographic parameter of HBOB
- 14. All Steady-State Spectra of HBO
- 15. Table of Steady State Spectra of HBO
- 16. All Steady-State Spectra of HBOB
- 17. Table of Steady State Spectra of HBOB
- 18. All Steady-State Spectra of HB
- 19. Table of Steady State Spectra of HB
- 20. All Steady-State Spectra of HBN
- 21. Table of Steady State Spectra of HBN
- 22. All Steady-State Spectra of HBON
- 23. Table of Steady State Spectra of HBON
- 24. TCSPC spectra of HBO
- 25. Table for TCSPC of HBO
- 26. TCSPC spectra of HBOB
- 27. Table for TCSPC of HBOB
- 28. TCSPC spectra of HB
- 29. Table for TCSPC of HB
- **30. TCSPC spectra of HBON**
- **31. Table for TCSPC of HBON**
- 32. Dynamic Light Scattering spectra
- 33. Solvent abbreviation Index

Synthesis Procedure of HBO, HBOB, HBON:

An ethanolic solution (2mmol) of 2-hydroxy-5-bromobenzaldehyde (HB) was treated with an equivalent amount of 2-aminophenol. Then the mixture was allowed to reflux overnight under magnetic stirrer to obtain our desire Schiff base (E)-4-bromo-2-(((2hydroxyphenyl)imino)methyl)phenol with 82% yield. This was collected by suction filtration, washed with ethanol (20 mL) and dried in openair for 24 hours and the product is characterized by NMR spectroscopy. To a stirred solution of 5mmol of this Schiff in DCM, 9mmol of DDQ was added and allowed to stir for overnight to get 2-(benzo[d]oxazol-2-yl)-4bromophenol (HBO). Then filtrate was collected andpurified by column chromatography using ethyl acetate-hexane mixture eluent with 70% yield. HBO was characterized using NMR (Figure S1). The compound HBO (2mmol) was suspended in 20mL of glacial acetic acid and treated with 10mmol of hexamethylenetetramine (HMTA). The reaction mixture was refluxed with stirring for 20 h, after which thin-layer chromatography (TLC) analysis showed complete consumption of the starting material. The reaction mixture was then poured onto 100mL chilled 2M HCl solution, whereupon a reddish brown precipitate appeared while being stirred. The solid was filtered, washed with 50mL of water in portions, and dried for overnight in vacuum. The product3-(benzo[d]oxazol-2-yl)-5-bromo-2-hydroxybenzaldehyde (HBOB) was purified by column chromatography using ethyl acetate-hexane mixture eluent with 70% yield and characterized using NMR and ESI-MS (Figure S2-S4). A methanolic solution (2mmol) of HBOB was treated with an equivalent amount of hydrazine hydrate. Then the mixture was allowed to reflux 8 hoursunder the magnetic stirrer to obtain our desire Schiff base (E)-2-(benzo[d]oxazol-2-yl)-4-bromo-6-(hydrazonomethyl) phenol (HBON) with 82% yield. This ac collected by suction filtration, washed with ethanol (30 mL) and dried in openair for 24 hours and the product is characterized by NMR spectroscopy (Figure S7-S9).

<u>Time Correlated Single Photon Counting (TCSPC) Measurement</u>

The equation for fluorescence decay is the following

$$I(t) = A + \sum_{i}^{n} B_{i} e^{\frac{-t}{\tau_{i}}}$$

 τ_1 , τ_2 , τ_3 = Excited state lifetime of components

B1, B2, B3= Normalized Pre-exponential Function

$$I(t) = A + B_1 e^{\frac{-t}{\tau_1}} + B_2 e^{\frac{-t}{\tau_2}} + B_3 e^{\frac{-t}{\tau_3}}$$

$$Relative Amplitude = \frac{B_i \tau_i}{\sum_{i=1}^{n} B_i \tau_i}$$

Quantum Yield Measurement:

Utilizing the conventional approach, the fluorescence quantum yield of the chemical in different solvents with different polarity levels was calculated using the following equation in relation to the standard coumarin 153 molecule, whose quantum yield is known (Φ =0.95 in ethanol medium):

$$\Phi_s = \Phi_R \times \frac{A_S}{A_R} \times \frac{(Abs)_R}{(Abs)_S} \times \frac{\eta_s^2}{\eta_R^2}$$

Where, 'A' denotes for area under the curve of the fluorescence spectra, '(Abs)' and ' η ' denotes the absorbance value and the refractive index of the solvents respectively. ' Φ ' refers

to the fluorescence quantum yield of the corresponding compounds. Subscripts 'R' and 'S' denote reference and sample, respectively. We have added this part in the supporting information file.

Figure S1: ¹H NMR spectrum of HBO in CDCl₃

Figure S2: ¹H NMR spectrum of HBOB in CDCl₃

Figure S3: ¹³C NMR spectrum of HBOB in CDCl₃

Figure S4: ESI-MS of HBOB

Figure S5: ¹H NMR spectrum of HBN in CDCl₃

Figure S6: ¹³C NMR spectrum of HBN in CDCl₃

Figure S7: ¹H NMR spectrum of HBON in CDCl₃

Figure S8: ¹³C NMR spectrum of HBON in CDCl₃

Figure S9: ESI-MS of HBON

 Table S1. For Crystallographic Parameters of HBOB

Parameters	НВОВ
CCDC	2351952
Formula	C14H8BrNO3
Formula Weight	318.12
Crystal System	monoclinic
Spacegroup	P 2 ₁ /C ₁
a [Å]	4.775 (2)
b [Å]	11.0709 (5)
c [Å]	22.9812 (9)
α [°]	90
β [°]	95.654 (1)
γ[°]	90
V [Å ³]	1208.96 (9)
h, k, l (max.)	5,13,27
Z	4
D(calc) [g/cm ⁻³]	1.748
F(000)	632
Temperature (K)	273
θ Min-Max [°]	3.57, 25.724
No. of unique data	2299
R(int)	0.069
Observed data $[I > 2.0 \sigma(I)]$	675
R1, wR2	0.0348,0.0687
GOF on F ²	1.110

Figure S10: Absorption spectra of **HBO** in (A) different solvent, (B) presence of TFA in ACN solvent, (C) presence of TBAOH in ACN solvent, (D) Excitation spectra in different solvents, Emission spectra of **HBO** in (E) different solvents, (F) presence of TBAOH in ACN solvent.

Solvents	$\lambda^{abs}_{max}(nm)$	$\lambda^{abs}_{max}(nm)$
HEPT	298, 332, 345	402,483,513
CHCl ₃	298, 331, 343	402,485,509
ACN	298, 329, 343	399,484,504
DMSO	298, 330, 342	402.486.510
21120	_,,,,,,,,,,,,,,	,
MEOH	298, 330, 342, 407	398,456,492
WATER	284, 316, 338	380,490,519
BASE	298, 330, 342, 405	487
DINCL	_, , , , , , , , , , , , , , , , , , ,	,

 Table S2: Table of Steady State Spectra of HBO

Figure S11: (A) Absorption spectra, (B) Excitation spectra, (C) Emission spectra of **HBOB** in different solvents

Solvents	$\lambda^{abs}_{max}(nm)$	$\lambda^{abs}_{max}(nm)$	Quantum yield
HEPT	298,354,365	413,518	0.22 ± 0.02
CHCl ₃	297,360,370	432,519	0.35 ± 0.01
ACN	296,351,356	427,516	0.30 ± 0.02
DMSO	297,350,357,458	436,522	0.12 ± 0.01
МЕОН	291,345,368,432	432,526	0.23 ± 0.03
WATER	295,368,386,423	440,520	0.09 ± 0.01
BASE	296,351,356,457	520	

Table S3: Table of Steady State Spectra of HBOB

Figure S12: Absorption spectra of **HB** in (A) different solvent, (B) presence of TEA in ACN solvent, Emission spectra of **HB** in (E) different solvents, (B) presence of TFA in ACN solvent, (F) presence of TEA in ACN solvent.

Solvents	$\lambda^{abs}_{max}(nm)$	$\lambda^{abs}_{max}(nm)$
НЕРТ	341	403,515
CHCl ₃	342	431,514
ACN	336	413,517
DMSO	335,420	414,476
МЕОН	336	435,491
WATE	339,391	403,504
К		
BASE	343,412	483

 Table S4: Table of Steady State Spectra of HB

Figure S13: Absorption spectra of **HBN** in (A) different solvent, (B) presence of TEA in ACN solvent,(C) presence of TEA in ACN solvent, (D) Excitation spectra of HB, Emission spectra of HB in (E) different solvents, (F) presence of TFA in ACN solvent.

Table S5: Table of Steady State Spectra of HBN

Solvents	$\lambda^{abs}_{max}(nm)$	$\lambda^{em}_{max}(nm)$
HEPT	273,316,385	430,554,588
CHCl ₃	276,327,382	430,558,587
ACN	278,319,370	429,560
DMSO	285,325,371	430,551
МЕОН	378,320,370	430,557
WATE	270,314,390	452,560

Figure S14: (A) Absorption spectra, (B) Excitation spectra, (C) Emission spectra of **HBON** in different solvents.

Solvents	$\lambda^{abs}_{max}(nm)$	$\lambda^{abs}_{max}(nm)$	Quantum yield
НЕРТ	281,362	437,559,584	0.15 ± 0.01
CHCl ₃	280,361	445,551	0.20 ± 0.02
ACN	282,358	438,547	0.10 ± 0.01
DMSO	291,361	440,532	0.09 ± 0.01

Table S6: Table of Steady State Spectra of HBON

МЕОН	292,356	441,541	0.13 ± 0.02
WATE	292,362	421,561	0.12 ± 0.01
R			
BASE	358,440	445,500	0.22 ± 0.03
ACID	280,382	560	0.30 ± 0.02

Figure S15: Emission decays of HBO in (λ_{ex} =314nm) (A) various solvents at 390nm (B) n-Hept at different monitoring wavelength. The dashed lines represent the IRF of the instrument. The black solid lines represent the best multiexponential fit provided to the emission decay signals.

solvent	Wavelength(nm	τ_1/α_1	τ_2/α_2	τ_3/α_3
)			
HEPT	390	0.63/7	1.89/82	5/11
НЕРТ	410	0.61/5	1.87/85	4.76/10
НЕРТ	440	0.79/31	1.81/69	
HEPT	460	0.90/80	1.95/20	
HEPT	500	0.94/100		
НЕРТ	510	0.97/100		
CHCl ₃	390	0.65/19	2.07/55	6.09/26
CHCl ₃	510	1.12/100		
DMSO	390	0.148/73	2.38/11	11.65/1
				6
DMSO	510	0.33/84	2.03/16	
ACN	390	0.35/16	1.98/59	7.14/25
ACN	510	0.328/98	1.48/2	
МеОН	390	0.58/22	1.86/48	7.19/30
МеОН	500	0.38/56	1.557/2	0.40/42

 Table S7. Excited state lifetime parameters of HBO

МеОН	510	0.30/91	2.48/5	0.93/4
H ₂ O	390	0.39/31	2.24/32	0.93/4
H ₂ O	510	-	1.7/6	5.96/94

Figure S16: Emission decays of HBOB in (λ_{ex} =314nm) (A) various solvents at 410 nm (B) CHCl₃ at different monitoring wavelength. The dashed lines represent the IRF of the instrument. The black solid lines represent the best multiexponential fit provided to the emission decay signals.

solvent	Wavelen	τ_1/α_1	τ_2/α_2	τ_3/α_3
	gth(nm)	(ns)	(ns)	(ns)

Table S8. Excited state lifetime parameters of HBOB

HEPT	420	0.88/18	2.18/69	8.65/13
HEPT	520		2.19/100	
				0/14
CHCl ₃	420	0.74/24	2.3/63	9/14
CHCh		0.65/10	2 09/81	6 77/8
energ	400	0.05/10	2.09/01	0.7770
CHCl ₃	480	0.75/12	2.17/89	
CHCl ₃	500	0.87/72	2.21/93	
CHCl ₃	520		2.27/100	
CHCl ₃	540		2.18/100	
	<u>/20</u>	0.08/71	3 3//10	12 83/10
Diffo	420	0.96/71	5.54/17	12.05/10
DMSO	520		2.34/100	
ACN	420	0.54/14	3.0/57	8.86/29
ACN	520		2.37/100	
		0.79/20	2.54/50	0.75/01
MeOH	420	0.78/29	2.54/50	8./5/21
МеОН	520	0.74/35	2.46/65	
Н2О	420	1.15/16	5.46/73	13.48/11
H2O	520	1.13/25	2.72/75	
BASE	520		2.37/100	

Figure S17: Emission decays of HB in (λ_{ex} =314nm) (A) various solvents at 410 nm (B) CHCl₃ at different monitoring wavelength. The dashed lines represent the IRF of the instrument. The black solid lines represent the best multiexponential fit provided to the emission decay signals.

Table S9. Excited state lifetime	parameters of HB
----------------------------------	------------------

Solvent	Wavelength(nm	$\tau_1(ns)/\alpha_1$	$\tau_2(ns)/\alpha_2$	$\tau_3(ns)/\alpha_3$
)			

Heptane	430	1.28/62%	2.7/37%	-
Heptane	500	0.08/79%	1.9/20%	
CHCl ₃	430	0.5/14.8%	1.9/80%	5.8/4.3%
CHCl ₃	460	0.1/26.3%	1.8/65.6%	4.9/8%
CHCl ₃	480	0.1/54%	1.7/38%	4.6/7%
CHCl ₃	500	0.1/72%	1.7/22%	4.6/5%
CHCl ₃	520	0.1/84%	2.4/15%	
CHCl ₃	540	0.1/88%	2.6/11%	 -
DMSO	430	0.2/37%	1.6/44%	10/19%
DMSO	490	0.17/23%	2.9/65%	11/11%
МеОН	430	0.15/51%	1.4/39%	4.2/10%
МеОН	490	0.1/51.4%	1.3/36%	3.6/11%
H ₂ O	430	1.14/31%	5.5/54%	14/15%
H ₂ O	490	0.7/37%	3.1/35%	10/28%
Base	490	0.35/27	2.9/73	

Figure S18: Emission decays of HBON in (λ_{ex} =403nm) DCM at different monitoring wavelength. The dashed lines represent the IRF of the instrument. The black solid lines represent the best multiexponential fit provided to the emission decay signals

solvent	Wavelength(nm	τ_1	α1	$ au_2$	α1	$ au_3$	α3	χ^2
)							
НЕРТ	550			0.722	92.24%	2.197	7.76%	1.13
НЕРТ	530	0.084	10.84%	0.811	79.63%	4.480	9.53%	1.02
НЕРТ	480	0.062	23.25%	1.264	28.04%	5.195	48.71%	1.05

Table S10. Excited state lifetime parameters of HBON

CHCl ₃	550	0.114	11.69%	1.180	76.25%	5.394	12.07%	1.02
DCM	580	0.092	6.39%	0.876	87.5%	4.727	6.11%	1.10
DCM	550	0.097	6.68%	0.886	83.25%	5.186	10.07%	0.93
DCM	530	0.129	7.17%	0.886	76.46%	5.568	16.37%	1.04
DCM	480	0.224	16.62%	1.321	36.6%	6.397	46.78%	1.02
DMSO	480	0.135	16.46%	0.731	38.83%	3.150	44.71%	1.00
DMSO	550	0.187	40.68%	0.723	37.09%	2.408	22.23%	1.00
ACN	480	0.055	29.4%	0.636	51.02%	3.781	19.59%	1.23
ACN	550			0.399	79.85%	0.849	20.15%	1.20
МеОН	480	0.0866	39.94%	0.747	41.02%	2.537	19.04%	1.15
МеОН	550	0.1273	48.42%	0.586	41.69%	2.50	9.89%	0.95
H ₂ O	550	0.037	18.05%	0.723	22.43%	1.731	59.52%	1.16
ACID	550	0.089	2.82%	2.059	97.18%			0.99
ACID	480	0.094	6.07%	0.6777	66.0%	3.762	27.93%	1.01
BASE	450	0.0745	7.4%	1.35	61.17%	3.50	31.43%	0.95

Figure S19: Dynamic Light Scattering spectra of (A) HBO, (B) HBOB, (C) HBON

Solvent abbreviation Index

Abbreviatio	Solvent name
n	
Н	Heptane
CHCl ₃	Chloroform
DCM	Dichloromethane
ACN	Acetonitrile
DMSO	DimethylSulfoxide
МеОН	Methanol
W	Water

THF	Tetrahydrofuran
TFA	Trifluroacetic Acid
TEA	Triethylamine
ТВАОН	Tetrabutylammonium Hydroxide