Supporting Information

for

Theoretical Study on the Structural and Thermodynamic Properties of U-He compounds under High Pressure

Ye Cao,^a Hongxing Song,^{*a} Xiaozhen Yan,^a Hao Wang,^a Yufeng Wang,^a Fengchao Wu,^a Leilei Zhang,^a Qiang Wu^{*a} and Huayun Geng^{*ab}

a National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China;

b HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, P. R. China

Corresponding Authors:

hxsong555@163.com (Hong X. Song); wuqianglsd@163.com (Qiang Wu); hygeng@outlook.com (Hua Y. Geng)

Phase	Space	Lattice	Atom	Fraction	Wyckoff		
	group	parameters		Х	у	Z	Position
		a=10.320 Å	U1	0.664	0.500	-0.165	16n
U ₄ He	Fmmm	b=3.434 Å	U5	0.341	0.500	-0.500	8g
		c=13.017 Å	U7	0.500	0.500	-0.346	8i
		α=β=γ=90°	He1	0.936	0.500	-0.500	8g
	<i>p</i> 1	a=2.746 Å					
U ₆ He		b=4.481 Å	U1	0.533	0.676	0.716	2i
		c=7.023 Å	U2	0.801	0.853	0.353	2i
		α=100.0°	U4	0.819	0.241	0.964	2i
		β=92.3°	He1	0.000	0.500	0.500	1g
		γ=90.7°					

Table S1. Crystal structure information of *Fmmm*-U₄He and P^{1} -U₆He at 150 GPa.

Fig. S1. The phonon dispersion spectra at 100, 150, and 300 GPa of (a)-(c) *Pm*-UHe, (d)-(f) *P1*-U₂He, (g)-(i) *P1*-U₃He and (j)-(l) *P1*-U₄He, respectively.

Fig. S2. Gibbs free energy of (a) Fmmm-U₄He and (b) $P^{\overline{1}}$ -U₆He within quasiharmonic approximation (QHA) at 150 GPa.

Under the quasi-harmonic approximation (QHA), ¹ the Gibbs free energy of *Fmmm*- U_4 He can be expressed as:

$$\Delta G = \frac{G(U_n He) - nG(U) - G(He)}{n+1} \tag{1}$$

where G(U) and G (*He*) represented the Gibbs free energy of the most stable structure of element uranium (α -U) and helium (*hcp*-He), respectively.

<i>Fmmm</i> -U ₄ He								
	U1	U2	U3	U4	U5			
Charge	+0.023	+0.023	+0.029	+0.029	-0.253			
	U6	U6 U7 U8		He1	He2			
Charge	-0.253	+0.083	+0.083	+0.118	+0.118			
P ¹ -U ₆ He								
	U1	U2	U3	U4	U5			
Charge	-0.127	+0.062	+0.062	-0.008	-0.008			
	U6	He1						
Charge	-0.127	+0.147						

Table S2. Bader charge (in e) of *Fmmm*-U₄He and $P^{\overline{1}}$ -U₆He at 150 GPa.

Table S3. The calculated independent elastic constants C_{ij} , bulk modulus *B*, shear modulus *G*, Young's modulus *E* (in GPa), Poisson's ratio *v*, and longitudinal v_i , transverse v_i , average sound velocities v_m (in m/s), Debye temperature θ_D (in K), and *B/G* of α -U under 0 and 100 GPa, as well as experimental data and other theoretical calculations.

Pressure (GPa)	C_{11}	<i>C</i> ₂₂	<i>C</i> ₃₃	<i>C</i> ₄₄	C55	<i>C</i> 66	<i>C</i> ₁₂	<i>C</i> ₁₃	<i>C</i> ₂₃
0 (Expt. ²)	215	199	267	124	73	74	46	22	108
0 (Calc. ³)	296	216	367	153	129	99	60	29	141
0 (Calc. ⁴)	295	215	347	143	130	102	68	25	149
0 (Calc. ⁵)	287	220	352	151	117	101	66	28	152
0	300.0	226.2	361.5	155.0	126.2	99.2	60.1	27.3	138.9
100 (Calc. ⁵)	1165	770	1020	355	293	310	224	167	453
100	1153.1	758.5	1108.7	367.7	312.3	309.4	209.9	200.5	428.8
Pressure (GPa)	В	G	Ε	v	v_{l}	$v_{_t}$	$v_{_m}$	$ heta_D$	B/G
0 (Expt. ²)	115	87		0.20				251	1.322
0 (Calc. ³)	149	108	261	0.21				287	1.380
0 (Calc. ⁴)	147	108	261	0.204				284	1.357
0 (Calc. ⁵)	148	107	259	0.207	3846	2338	2583	283	1.383
0	146.6	114.1	271.8	0.191	3893.1	2406.0	2653.6	290.8	1.285
100 (Calc. ⁵)	513	320	795	0.242	5895	3439	3815	464	1.603
100	515.6	333.2	822.4	0.234	5959.5	3511.3	3897.1	473.7	1.547

Fig. S3. (a) The calculated mean squared displacement (MSD) and (b) the trajectories of U (red) and He (blue) atoms in Fmmm-U₄He at 4000 K.

Fig. S4. (a) The calculated mean squared displacement (MSD) and (b) the trajectories of U (red) and He (blue) atoms in P^{1} -U₆He at 5000 K.

Fig. S5. The trajectories of He (red) and U (blue) atoms of (a)-(d) *Fmmm*-U₄He and (e)-(h) $P^{\overline{1}}$ -U₆He at 300, 500, 700 and 900 K.

Fig. S6. The evolution of enthalpy with time of (a) Fmmm-U₄He and (b) $P^{\overline{1}}$ -U₆He at 300, 500, 700 and 900 K.

Fig. S7. The radial distribution function of (a)-(c) Fmmm-U₄He and (d)-(f) P^{1} -U₆He at select temperature.

References

- A. Togo, L. Chaput, I. Tanaka and G. Hug, First-principles phonon calculations of thermal expansion in Ti₃SiC₂, Ti₃AlC₂, and Ti₃GeC₂, *Phys. Rev. B*, 2010, **81**, 174301.
- 2 E. S Fisher and H. J. McSkimin, Adiabatic elastic moduli of single crystal alpha-uranium, *J. Appl. Phys.*, 1958, **29**, 1473-1484.
- 3 C. D. Taylor, Evaluation of first-principles techniques for obtaining materials parameters of α-uranium and the (001) α-uranium surface, *Phys. Rev. B*, 2009, **80**, 149906.
- 4 J. W. Yang, T. Gao, B. Q. Liu, G. A. Sun and B. Chen, Structure and elastic anisotropy of uranium under pressure up to 100 GPa, *Eur Phys. J. B*, 2014, **87**, 130.
- 5 H. J. Zhang, S. N. Li, J. J. Zheng, W. D. Li and B. T. Wang, Effects of pressure on structural, electronic, and mechanical properties of, α, β and γ uranium, *Chin. Phys. B*, 2017, 26, 066104.