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Preliminary: Gradient Descent Optimization

Gradient Descent has become a fundamental algorithm in the op-
timization of complex systems, notably within the context of ma-
chine learning. The algorithm operates by iteratively adjusting
parameters in the direction of the steepest descent, or "gradient,"
of the function being optimized. Given its iterative nature, the
algorithm has demonstrated utility in optimizing problems where
the search space is high-dimensional and the objective function is
non-convex1 2. In computational modeling, Gradient Descent has
been applied to a range of applications, predominantly for neural
network training3. However, gradient descent application is not
confined to any single field, and it has made inroads into bioin-
formatics and systems biology for applications such as parameter
estimation in complex biological models4.

Enzyme Network for Computing Signal Concentrations

Computing the concentrations needed for the signals “0” or “1” is
a main component of our system. We formulate an optimization
problem modeled as a neural network, as depicted in Fig. 1. The
architecture of this network comprises two weights: one for the
concentration corresponding to a binary “0” and the other for the
concentration corresponding to a binary ’1.’

The input to the neural network consists of the truth table of
the logic function under design. During the forward pass, the
network computes the resultant pH levels for each combination
of input signals based on their corresponding concentrations, as
modulated by the reactions in the buffers.

Since we want the network to learn the concentration that
would cause the buffer to be in the pH that makes the enzymatic
reaction move forward or backward, we define a ranged loss func-
tion, represented by Equation 1. y represents the network’s out-
put, while a and b are the range in which we need the network’s
output (i.e., the buffer’s pH) to lie, which is based on the pH range
for the forward or reverse reaction to happen. This function is
designed to incentivize the network to adjust its weights (signal
concentration) such that the resultant pH falls within specified
ranges according to the expected output (0 or 1). These ranges
are dependent on the expected output from the logic function’s
truth table. Specifically, the loss function pushes for a pH within
the forward reaction range when the expected output is “1” and

a Computer Science Department, Brown University, Providence, RI, USA. E-mail:
ahmed_agiza@brown.edu
b Department of Chemistry, Brown University, Providence, RI, USA.
c School of Engineering, Brown University, Providence, RI, USA.

Truth Table
W0

Concentration for 
the Zero signal

W1

Concentration for 
the One signal

Circuit's pH
Computation

Neural Network for Computing
 Signal Concentrations

Predicted pH Ranged Loss
Function

Optimizer

Gradients

Weight (concentrations)
update

Target pH

Fig. 1 Computing the concentrations for encoding the input signals using
gradient descent. The concentrations are encoded as network weights.
The pH computations capture the logic of the circuit’s design and eval-
uate the pH at the different buffers. The ranged loss function updates
the concentrations untill it meets the target range.

within the reverse reaction range when the expected output is ’0.’

Range Loss(y,(a,b)) =


0 if a ≤ y ≤ b,

|y−a| if y < a,

|y−b| if y > b.

(1)

The neural network’s training employs this specialized loss
function, ensuring that the resultant pH for each logic condition
aligns with the pre-specified ranges. Upon convergence, the net-
work’s optimized weights yield the concentrations that should be
employed for signals “0” and “1” in the enzymatic logic gates.

Signal Readout
Detection of L-malic acid is usually done by applying a sequence
of two catalyzed reactions to produce NADH.

L−Malic acid+NAD+ L−MDH−−−−−⇀↽−−−−− oxaloacetate+NADH+H+ (2)

Oxaloacetate+L−glutamate GOT−−−→ L−aspartate+2−oxoglutarate
(3)

The first reaction, outlined in Equation 2 is catalyzed by the
enzyme L-malate dehydrogenase (L-MDH), whereby L-malic acid
is oxidized to form oxaloacetate, with nicotinamide-adenine din-
ucleotide (NAD+) serving as the cofactor. The equilibrium of this
reaction strongly favors the reactants L-malic acid and NAD+.
To overcome this limitation and generate a detectable signal,
a second reaction, outlined in Equation 3 is induced to trap

1

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024



Input (e.g., Added Acid/Base)Ou
tp

ut
 (e

.g
., 

Co
nc

en
tra

tio
n)

f(x)

(a) Graph of the non-linear function

f (x), describing the behavior of

chemical buffers in response to the

addition of acid/base. The curve

mimics a piecewise function

corresponding to the behavior of the

buffer within and outside the buffering

range.
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(b) Graph of the non-linear function

g(x), describing the enzyme activity at

different concentrations, which

increases as it approaches the optimal

pH range.
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(c) Graph of the non-linear composite

function ( f ◦g)(x) describing the

behavior of the enzyme while changing

the buffer’s concentration.
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(d) Graph of the linear relation

between input and output in linear

computation systems, such as the

change in the concentration of the

system by varying the concentration of

one of the substrates.

Fig. 2 Comparison between non-linear functions in our model (a) – (c),
compared to the linear relation (d) induced by simpler computational
models.

the resulting NADH product. This is accomplished by convert-
ing oxaloacetate to L-aspartate and 2-oxoglutarate, using an ex-
cess of L-glutamate as the substrate, in the presence of the en-
zyme glutamate-oxaloacetate transaminase (GOT). The amount
of NADH generated corresponds to the original amount of L-
malic acid present in the terminal buffer. The presence of NADH
is subsequently quantified using its characteristic increase in ab-
sorbance at a wavelength of 340 nm. Measurement of this ab-
sorbance is executed with a UV spectrometer. An increase in ab-
sorbance at 340 nm indicates the presence of L-malic acid.

Visualizing Non-linear Components of the System

As we explained, our model introduces non-linearity through the
chemical buffers that host the enzymatic reactions and the enzy-
matic reactions themselves.

If we model the buffer’s change in pH in response to the con-
centration input of an acid or base through a non-linear function
f (x) and the enzyme’s activity in response to the pH as a non-
linear function g(x). Thus, the system’s overall response can be
expressed as the composition of these two non-linear functions
( f ◦g)(x). This composition adds a layer of preferred non-linearity
to our computational framework, allowing for further flexibility
in the framework. For instance, Fig. 2a illustrates the non-
linear characteristic of the function f (x) where the curve captures

the behavior of chemical buffers, represented by piecewise func-
tions composed of linear segments to describe the buffer behavior
inside and outside the buffer range. Fig. 2b depicts the non-
linearity within g(x), which captures enzyme activity at different
pH levels, showing how enzyme activity increases and peaks to-
wards the optimal pH. Meanwhile, Fig. 2c represents the com-
posite non-linear function ( f ◦g)(x), which forms the foundational
building block of our system, offering a more adaptable model in
contrast to the conventional linearity, as indicated by Fig. 2d,
found in some current unconventional computation methods5,
where the system’s output is changed by linearly varying the con-
centration of one of the substrates. Mathematically, our frame-
work can be seen as an approximation model for a given logic
design’s functionality, where the function ( f ◦ g)(x) serves as the
building block. The logic functionality’s structure dictates the ar-
chitecture and how these non-linear functions are composed to-
gether, which translates into the enzymatic reactions we carry.
Meanwhile, the determination of the input signal concentrations
is akin to parameter optimization in a model, aiming to refine the
system’s behavior to match the intended computational function
closely.

Absorbance Curves for the Digital Gates and the Machine
Learning Perceptron
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Fig. 3 UV-vis spectroscopy for the outputs of the NOR circuit modeled
using enzymatic reactions.
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We presented the quantitative output for our models of the dig-
ital gates and the machine learning perceptron. Fig. 3, 5, and 6
show the corresponding UV-vis absorbance curves.
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Fig. 4 UV-vis spectroscopy for the outputs of the OR circuit modeled
using enzymatic reactions.
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Fig. 5 UV-vis spectroscopy for the outputs of the AND-OR circuit mod-
eled using enzymatic reactions.
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Fig. 6 Classification results for the machine learning perceptron modeled using enzymatic reactions.
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