
Supplementary Information: Cooperative aggregation of gold nanoparticles on 
phospholipid vesicles is electrostatically driven

Calculation of the ionic strength increase from ζ data

Fig. S1A shows the measured ζ values of the AuNPs at each KCl concentration explored in the 
experiments. These values have been used to calculate the number of charges per NP (Fig. 
S1B) using both the Grahame equation for planar geometries and an alternative equation 
(equation (2)) that includes a correction for curvature, as described in the main text. Since the 
relative permittivity of water significantly decreases near a strong electric field such as that of 
a AuNP, we have calculated the number of charges per NP using two values of relative 
permittivity: 80 (representing bulk water, presented as black stars in Fig. S1B) and 20 (reduced 
due to local electric field effects, as red stars). Finally, Fig. S1C displays the results of the 
subsequent calculation of the increase (%) in ionic strength in the volume between a vesicle 
and a NP, vcell

Figure S1. A) ζ values of AuNPs synthesized by PLAL at all studied KCl concentrations. B) using the Grahame equation for 
planar surfaces (square markers) and the curvature-corrected equation for spherical surfaces. Calculations are presented 
for ε= 80 (black stars), and ε=20 (red stars).  C) Estimated variation in local ionic strength due to complete release of 
adsorbed ions upon AuNP binding to vesicles.   

DLS

Figure S2. DLS size distributions by intensity of the mixtures of AuNPs and vesicles at a 1:2 ratio and increasing KCl 
concentrations.

Fig. S2 Shows the size distribution of AuNPs in presence of vesicles. Given the higher refractive index 
of gold compared to that of the vesicles, the DLS signal is dominated by the stronger scattering from 
the AuNPs. Although the solutions have different degrees of aggregation as evidenced by the extinction 
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spectra of Fig 2A in the main text, The hydrodynamic sizes at all the [KCl] coincide with the vesicle 
size. Such evidence demonstrates that, also at high ionic strength where the AuNP SPR indicates a low 
aggregation, all the nanoparticles are bound to the vesicles.

Derivation  of the distribution of AuNP among the vesicles from the  kinetic model

The temporal evolution of the different species in the kinetic schemes (a), (b) and (c) in the 
main text is given by differential equations that describe the rate of change of NP and vesicle 
concentrations:
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The set of recursive equations (eq. 1d) can be solved introducing the auxiliary functions 
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Where [Vestot] denotes the total concentration of vesicles, which is constant.

At equilibrium, the total AuNP concentration ([NPtot]) is given by:
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 Thus, the term , represents the average number of AuNPs per vesicle  𝑎 = 𝑛𝑘𝑐𝑡
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knowledge, the first demonstration based on chemical kinetics.

For non-cooperative cases where kkc, the solution above holds for j2. For j=1, the differential 
equation for [Ves1] differs and is given by:
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Eq. 4 shows that the concentration of vesicles with one bound NP ([Ves1]) is proportional to 
the initial concentration of free vesicles ([Ves0]), adjusted by the rate constants and the time 
elapsed. 

The simulations in the main text have shown that, although kc>k the two rate constants are of 
the same order of magnitude and eq. 9a can be approximated to
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Eq 5a can be easily integrated obtaining the exponential decay of free nanoparticles 
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According to eq. 5b, the decay of free vesicles over time is very fast, as it is determined by the 
exponential of an exponential, reaching the plateau value:
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Thus, the fraction of free vesicles decays exponentially based on the ratio of the rate constants 
k/kc and the ratio of [NPtot]/[Vestot]. 

Starting from the equilibrium condition where no vesicles are bound to nanoparticles ([Ves0]) 
(eq. 6), we can apply eqs. 2 & 3 to calculate the equilibrium concentration of vesicles that are 
decorated with 1, 2, or j nanoparticles. Since k and kc calculated in the previous section are 
similar, the exponential in eq. 6 can be multiplied by k/kc  1, which allows us to use a recursive 
formula to determine the concentration of vesicles with varying number of nanoparticles, 
[Vesj]:
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Here,  represents a scaled parameter that we need to redefine because it no longer leads to a 𝑎
pure Poisson distribution due to the adjustments made for the rate constants. 

To maintain the total number of vesicles, we ensure that all vesicles, regardless of whether they 
have NPs bound or not, sum up to the total vesicle concentration. This leads us to define  𝑎
based on the balance of the total number of vesicles:
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From which a can be calculated as eq. 9 in the main text
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The parameter a defined in the above equation, is the expectation value of NP per vesicles if 
the distribution in eq. 7 holds as demonstrated below.

The expectation value for the number of bound NP per vesicle is
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 And therefore 
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