Ab initio treatment of molecular Coster-Kronig decay using complex-scaled equation-of-motion coupled-cluster theory

Supplementary Information

Jan Philipp Drennhaus, Anthuan Ferino-Pérez, Florian Matz, and Thomas-C. Jagau

Н	\mathbf{S}	Ar	Н	\mathbf{S}	Ar
	s-shells			p-shells	
0.33027132	2.38134993	2.20531200	1.32938926	9.58527386	8.87669400
0.21397640	1.54283057	1.42877900	0.86200227	6.21528098	5.75582400
0.10698820	0.77141529	0.71438900	0.43100117	3.10764077	2.87791200
0.05349410	0.38570764	0.35719500	0.21550055	1.55382011	1.43895600
0.02674705	0.19285382	0.17859750	0.10775027	0.77691005	0.71947800
0.01337352	0.09642691	0.08929875	0.05387514	0.38845503	0.35973900
0.00668676	0.04821346	0.04464938	0.02693757	0.19422751	0.17986950
0.00334338	0.02410673	0.02232469	0.01346878	0.09711376	0.08993475
		d-s	shells		
1.80846418	13.0395400	12.0756100	0.07992358	0.57627173	0.53367150
0.63938860	4.61017327	4.26937200	0.03996179	0.28813586	0.26683575
0.31969434	2.30508691	2.13468600	0.01998090	0.14406793	0.13341788
0.15984717	1.15254345	1.06734300	0.00999045	0.07203397	0.06670894

Table 1: Exponents of complex-scaled basis functions.

Table 2: Optimal complex scaling angles.

	Method	Basis	Angle
Ar	CS-EOM-CCSD	aug-cc-pCVQZ	16°
Ar	CS-EOM-CCSD	aug-cc-pCV5Z	17°
Ar	CBF-EOM-CCSD	aug-cc-pCV5Z+4(spd)	14°
Ar	CBF-EOM-CCSD	aug-cc-pCV5Z+6(spd)	32°
Ar	CBF-EOM-CCSD	aug-cc-pCV5Z+8(spd)	34°
H_2S	CBF-EOM-CCSD	aug-cc-pCVTZ(5sp)+4(spd)	17°
H_2S	CBF-EOM-CCSD	aug-cc-pCVTZ(5sp)+6(spd)	27°
H_2S	CBF-EOM-CCSD	aug-cc-pCVTZ(5sp)+8(spd)	14°

Table 3: Partial	Auger decay w	idths in meV	for the $2s^{-1}$	state of arg	gon computed v	vith CS-EOM	[-
CCSD a	and CBF-EOM	-CCSD using o	different bas	is sets. Res	ults from Phys.	Rev. A 103	3,
063102	(2021) obtained	using multico	nfigurational	Dirac-Harti	ree-Fock (MCDI	HF) theory ar	e
shown a	ıs well.						

CS-EOM-CCSD		CBF-EOM-CCSD			MCDHF	
	aug-cc-	aug-cc-		aug-cc-	pCV5Z	[Phys. Rev. A 103
Decay channel	pCVQZ	pCV5Z	$4(\mathrm{spd})$	$6(\mathrm{spd})$	$8(\mathrm{spd})$	$063102 \ (2021)]$
		$L_{2,3}M$	channels			
$^{1}P (2p^{-1}3s^{-1})$	969.6	1040.7	85.5	612.4	1146.1	414.7
$^{3}D(2p^{-1}3p^{-1})$	586.6	569.8	251.0	587.9	492.2	$125.1/198.8/337.7^a$
$^{1}S (2p^{-1}3p^{-1})$	357.6	389.0	318.3	427.1	361.6	267.9
$^{1}D(2p^{-1}3p^{-1})$	229.0	219.1	82.9	399.4	126.5	223.8
$^{3}S (2p^{-1}3p^{-1})$	144.5	154.2	83.7	143.7	148.5	143.5
$^{3}P(2p^{-1}3p^{-1})$	0.0	0.0	0.0	0.0	0.0	$7.2/26.8/18.9^a$
$^{1}P (2p^{-1}3p^{-1})$	0.0	0.0	0.0	0.0	0.0	23.6
$^{3}P (2p^{-1}3s^{-1})$	-14.1	0.5	-1.4	45.9	-15.9	$5.3/213.9/30.3^{a}$
		MM	channels			
$^{1}P (3s^{-1}3p^{-1})$	44.2	46.6	28.6	47.8	45.1	15.3
$^{3}P (3s^{-1}3p^{-1})$	18.4	18.9	8.2	17.5	19.1	$3.4/10.1/17.1^a$
${}^{1}S (3s^{-2})$	13.9	13.7	10.7	14.0	13.6	8.2
${}^{1}S (3p^{-2})$	4.1	4.1	3.7	3.7	4.0	0.7^b
${}^{1}\mathrm{D}~(3\mathrm{p}^{-2})$	-6.5	-6.4	1.2	-4.8	-6.5	
$^{3}P(3p^{-2})$	0.0	0.0	0.0	0.0	0.0	

^{*a*} Widths of the ${}^{3}P_{0}/{}^{3}P_{1}/{}^{3}P_{2}$ or ${}^{3}D_{1}/{}^{3}D_{2}/{}^{3}D_{3}$ channels, respectively. ^{*b*}Combined width of the $3p^{-2}$ channels (¹S, ¹D, ³P).

Decay	a	ug-cc-pC	VTZ(5sp)	Decay	aug-c	c-pCVTZ	Z(5sp)	
channel	$4(\mathrm{spd})$	$6(\mathrm{spd})$	$8(\mathrm{spd})$	channel	4(spd)	$6(\mathrm{spd})$	$8(\mathrm{spd})$	
		$L_{2,3}M$ cl	nannels		MM channels			
$^{1}B_{2} (4a_{1}^{-1}1b_{2}^{-1})$	215.2	225.6	244.3	${}^{1}\mathrm{B}_{2}(4\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	10.3	9.3	9.3	
${}^{1}\mathrm{B}_{1} (4\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	236.1	224.9	208.7	${}^{1}A_{1}(4a_{1}^{-2})$	8.7	7.7	7.5	
${}^{1}A_{1} (3a_{1}^{-1}4a_{1}^{-1})$	216.9	212.8	236.4	${}^{1}A_{1}(4a_{1}^{-1}5a_{1}^{-1})$	8.8	7.5	7.2	
${}^{1}A_{1} (1b_{2}^{-1}2b_{2}^{-1})$	124.8	101.9	97.8	${}^{1}\mathrm{B}_{1}(4\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	8.6	6.0	5.9	
$^{1}A_{1} (3a_{1}^{-1}5a_{1}^{-1})$	-45.5	100.2	97.2	${}^{3}B_{2}(4a_{1}^{-1}2b_{2}^{-1})$	5.0	3.9	3.8	
${}^{3}A_{1} (1b_{2}^{-1}2b_{2}^{-1})$	54.1	73.4	76.1	${}^{3}A_{1}(4a_{1}^{-1}5a_{1}^{-1})$	4.6	3.3	3.2	
${}^{1}A_{1} (1b_{1}^{-1}2b_{1}^{-1})$	57.2	57.9	65.2	${}^{1}A_{1}(5a_{1}^{-2})$	3.1	2.6	2.7	
${}^{3}A_{1} (3a_{1}^{-1}5a_{1}^{-1})$	-21.7	54.9	57.3	${}^{3}B_{1}(4a_{1}^{-1}2b_{1}^{-1})$	3.6	2.6	2.4	
${}^{3}A_{1} (1b_{1}^{-1}2b_{1}^{-1})$	37.8	47.4	59.8	${}^{1}\mathrm{B}_{2}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	1.1	0.7	0.8	
${}^{1}\mathrm{B}_{2} \ (5\mathrm{a}_{1}^{-1}\mathrm{1b}_{2}^{-1})$	9.7	42.2	43.0	${}^{1}\mathrm{B}_{1}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	1.1	0.6	0.6	
${}^{3}\mathrm{B}_{1} \; (3\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	23.0	38.3	34.1	${}^{3}\mathrm{B}_{2}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	0.6	0.5	0.5	
${}^{1}\mathrm{B}_{1} (5\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	29.8	35.9	33.6	${}^{1}\mathrm{A}_{1}(2\mathrm{b}_{2}^{-2})$	0.6	0.4	0.4	
${}^{3}A_{2} (1b_{1}^{-1}2b_{2}^{-1})$	8.3	31.4	32.6	${}^{3}\mathrm{B}_{1}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	0.3	0.3	0.3	
${}^{3}B_{2} (3a_{1}^{-1}2b_{2}^{-1})$	11.3	37.7	32.2	${}^{1}A_{1}(2b_{1}^{-2})$	0.5	0.1	0.1	
${}^{3}A_{2} (2b_{1}^{-1}1b_{2}^{-1})$	10.6	28.6	30.6	${}^{3}A_{2}(2b_{1}^{-1}2b_{2}^{-1})$	0.0	0.0	0.0	
${}^{3}\mathrm{B}_{2} (5\mathrm{a}_{1}^{-1}1\mathrm{b}_{2}^{-1})$	-4.2	25.0	26.7	${}^{1}A_{2}(2b_{1}^{-1}2b_{2}^{-1})$	0.0	-0.6	-0.6	
${}^{3}\mathrm{B}_{1} (5\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	16.8	18.9	22.9					
${}^{1}\mathrm{B}_{1} \; (3\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	-3.2	21.2	9.2					
${}^{1}A_{2} (2b_{1}^{-1}1b_{2}^{-1})$	-8.8	9.8	8.8					
${}^{1}A_{2} (1b_{1}^{-1}2b_{2}^{-1})$	-1.2	0.3	8.3					
${}^{1}\mathrm{B}_{2} \; (3\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	2.9	11.2	6.3					
${}^{3}\mathrm{B}_{2} \ (4\mathrm{a}_{1}^{-1}\mathrm{1b}_{2}^{-1})$	-3.6	-6.7	-5.3					
${}^{3}A_{1} (3a_{1}^{-1}4a_{1}^{-1})$	1.4	-13.2	-13.7					
${}^{3}\mathrm{B}_{1} \ (4\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	-4.3	-17.2	-15.6					

Table 4: Partial Auger decay widths in meV for the $2a_1^{-1}$ state of hydrogen sulfide computed with CBF-EOM-CCSD using the aug-cc-pCVTZ(5sp) basis set augmented by 4, 6, or 8 complex-scaled shells.

Decay channel	Total energy	Decay width	Decay channel	Total energy	Decay width	
	L _{2,3} M channels	3	MM channels			
$^{1}B_1 (4a_1^{-1} 1b_1^{-1})$	-391.50805	94.0	${}^{1}A_{1} (4a_{1}^{-2})$	-397.06871	2.5	
${}^{1}A_{1} (3a_{1}^{-1} 4a_{1}^{-1})$	-391.50812	94.4	${}^{1}\mathrm{B}_{1}~(4\mathrm{a}_{1}^{-1}~2\mathrm{b}_{1}^{-1})$	-397.29553	0.2	
${}^{1}\mathrm{B}_{2} \; (4\mathrm{a}_{1}^{-1} \; 1\mathrm{b}_{2}^{-1})$	-391.51614	69.5	${}^{1}A_{1} (4a_{1}^{-1} 5a_{1}^{-1})$	-397.48515	2.8	
${}^{3}\mathrm{B}_{1} \ (4\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{1}^{-1})$	-391.53342	589.1	${}^{3}\mathrm{B}_{1} \ (4\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{1}^{-1})$	-397.51107	0.4	
${}^{3}A_{1} (3a_{1}^{-1} 4a_{1}^{-1})$	-391.54028	617.2	${}^{1}\mathrm{B}_{2} \ (4\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{2}^{-1})$	-397.56269	0.7	
${}^{3}\mathrm{B}_{2} \ (4\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{2}^{-1})$	-391.54571	510.0	${}^{3}A_{1} (4a_{1}^{-1} 5a_{1}^{-1})$	-397.59880	0.4	
${}^{1}A_{1} (1b_{1}^{-1} 2b_{1}^{-1})$	-391.89365	53.1	${}^{3}\mathrm{B}_{2} \ (4\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{2}^{-1})$	-397.68791	0.5	
${}^{1}\mathrm{B}_{1} \; (3\mathrm{a}_{1}^{-1} \; 2\mathrm{b}_{1}^{-1})$	-391.92273	76.1	${}^{1}A_{1} (2b_{1}^{-2})$	-397.70788	0.4	
${}^{1}A_{2} (2b_{1}^{-1} \ 1b_{2}^{-1})$	-391.93410	43.8	${}^{1}\mathrm{B}_{1} \ (5\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{1}^{-1})$	-397.82839	0.6	
${}^{3}\mathrm{B}_{1} \; (3\mathrm{a}_{1}^{-1} \; 2\mathrm{b}_{1}^{-1})$	-391.94041	102.1	${}^{3}\mathrm{B}_{1} \ (5\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{1}^{-1})$	-397.88710	0.2	
${}^{3}A_{1} (1b_{1}^{-1} 2b_{1}^{-1})$	-391.94593	255.1	${}^{1}A_{1} (5a_{1}^{-2})$	-397.89703	0.5	
${}^{3}A_{2} (2b_{1}^{-1} 1b_{2}^{-1})$	-391.94798	60.9	${}^{1}A_{2} (2b_{1}^{-1} 2b_{2}^{-1})$	-397.96118	0.5	
${}^{1}A_{1} (3a_{1}^{-1} 5a_{1}^{-1})$	-391.94873	73.1	${}^{3}A_{2} (2b_{1}^{-1} 2b_{2}^{-1})$	-397.99345	0.0	
${}^{1}\mathrm{B}_{2} \ (5\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{2}^{-1})$	-391.98548	64.4	${}^{1}\mathrm{B}_{2} \ (5\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{2}^{-1})$	-398.02620	0.6	
${}^{3}\mathrm{B}_{1} \ (5\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{1}^{-1})$	-392.00506	199.9	${}^{3}\mathrm{B}_{2} \ (5\mathrm{a}_{1}^{-1} \ 2\mathrm{b}_{2}^{-1})$	-398.07858	0.2	
${}^{1}\mathrm{B}_{1} \ (5\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{1}^{-1})$	-392.00615	18.0	${}^{1}A_{1} (2b_{2}^{-2})$	-398.11993	0.6	
${}^{3}\mathrm{B}_{2} \ (5\mathrm{a}_{1}^{-1} \ 1\mathrm{b}_{2}^{-1})$	-392.00696	139.2				
${}^{3}A_{1} (3a_{1}^{-1} 5a_{1}^{-1})$	-392.01102	283.0				
${}^{1}A_{1} (1b_{2}^{-1} 2b_{2}^{-1})$	-392.04610	86.7				
${}^{1}A_{2} (1b_{1}^{-1} 2b_{2}^{-1})$	-392.10138	28.4				
${}^{3}A_{2} (1b_{1}^{-1} 2b_{2}^{-1})$	-392.10779	129.2				
${}^{1}\mathrm{B}_{2} \; (3\mathrm{a}_{1}^{-1} \; 2\mathrm{b}_{2}^{-1})$	-392.11116	22.5				
${}^{3}\text{B}_{2} (3a_{1}^{-1} 2b_{2}^{-1})$	-392.11196	144.0				
${}^{3}A_{1} (1b_{2}^{-1} 2b_{2}^{-1})$	-392.12382	269.2				

Table 5: Partial Auger decay widths in meV for the $2a_1^{-1}$ state of hydrogen sulfide computed with Fano-EOM-CCSD using the aug-cc-pCVTZ(5sp) basis set and freezing the $1a_1$ and $2a_1$ orbitals. Total energies of the doubly ionized target states are given in Hartree. The ground state of neutral hydrogen sulfide is at -399.16457 a.u.

Table 6: Total energies of dicationic states of argon in Hartree computed with EOM-DIP-CCSD and the aug-cc-pCV5Z basis set. The ground state of the neutral argon atom is at -527.50192261 a.u.

State	Energy	State	Energy
$^{1}S(2s^{-2})$	-502.11953780	$^{1}S(2p^{-1}3p^{-1})$	-516.93623795
$^{1}\mathrm{P}(2\mathrm{s}^{-1}2\mathrm{p}^{-1})$	-504.15162313	$^{1}\mathrm{D}(2\mathrm{p}^{-1}3\mathrm{p}^{-1})$	-517.00415593
$^{3}P(2s^{-1}2p^{-1})$	-504.99960172	$^{3}\mathrm{P}(2\mathrm{p}^{-1}3\mathrm{p}^{-1})$	-517.05644742
${}^{1}\mathrm{S}(2\mathrm{p}^{-2})$	-506.71950954	${}^{3}\mathrm{S}(2\mathrm{p}^{-1}3\mathrm{p}^{-1})$	-517.08070346
$^{1}\mathrm{D}(2\mathrm{p}^{-2})$	-507.04763959	$^{3}\mathrm{D}(2\mathrm{p}^{-1}3\mathrm{p}^{-1})$	-517.10768441
${}^{3}\mathrm{P}(2\mathrm{p}^{-2})$	-507.32726971	$^{1}P(2p^{-1}3p^{-1})$	-517.12890315
${}^{1}S(2s^{-1}3s^{-1})$	-513.64440003	${}^{1}S(3s^{-2})$	-524.63993328
$^{3}\mathrm{S}(2\mathrm{s}^{-1}3\mathrm{s}^{-1})$	-513.75903219	$^{1}\mathrm{P}(3\mathrm{s}^{-1}3\mathrm{p}^{-1})$	-525.15594198
$^{1}P(2s^{-1}3p^{-1})$	-514.30769076	$^{3}\mathrm{P}(3\mathrm{s}^{-1}3\mathrm{p}^{-1})$	-525.33962206
$^{3}P(2s^{-1}3p^{-1})$	-514.56199259	${}^{1}\mathrm{S}(3\mathrm{p}^{-2})$	-525.73558656
$^{1}\mathrm{P}(2\mathrm{p}^{-1}3\mathrm{s}^{-1})$	-516.40222113	${}^{1}\mathrm{D}(3\mathrm{p}^{-2})$	-525.82512212
$^{3}P(2p^{-1}3s^{-1})$	-516.44380731	${}^{3}\mathrm{P}(\mathrm{3p}^{-2})$	-525.88588074

Table 7: Total energies of dicationic states of hydrogen sulfide in Hartree computed with EOM-DIP-CCSD and the aug-cc-pCVTZ(5sp) basis set. The ground state of neutral hydrogen sulfide is at -399.29963301 a.u.

State	Energy	State	Energy	State	Energy
${}^{1}B_1(4a_1^{-1}1b_1^{-1})$	-391.50805055	${}^{3}\mathrm{B}_{1}(5\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	-392.00505733	${}^{1}\mathrm{B}_{2}(4\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	-397.56268737
${}^{1}A_{1}(3a_{1}^{-1}4a_{1}^{-1})$	-391.50812376	${}^{1}\mathrm{B}_{1}(5\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	-392.00614771	${}^{3}A_{1}(4a_{1}^{-1}5a_{1}^{-1})$	-397.59880345
${}^{1}\mathrm{B}_{2}(4\mathrm{a}_{1}^{-1}\mathrm{1b}_{2}^{-1})$	-391.51614467	${}^{3}\mathrm{B}_{2}(5\mathrm{a}_{1}^{-1}\mathrm{1b}_{2}^{-1})$	-392.00695775	${}^{3}\mathrm{B}_{2}(4\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	-397.68790891
${}^{3}\mathrm{B}_{1}(4\mathrm{a}_{1}^{-1}1\mathrm{b}_{1}^{-1})$	-391.53341771	${}^{3}A_{1}(3a_{1}^{-1}5a_{1}^{-1})$	-392.01102152	${}^{1}\mathrm{A}_{1}(2\mathrm{b}_{1}^{-2})$	-397.70787930
${}^{3}A_{1}(3a_{1}^{-1}4a_{1}^{-1})$	-391.54027728	${}^{1}A_{1}(1b_{2}^{-1}2b_{2}^{-1})$	-392.04610035	${}^{1}B_{1}(5a_{1}^{-1}2b_{1}^{-1})$	-397.82838608
${}^{3}\text{B}_{2}(4a_{1}^{-1}1b_{2}^{-1})$	-391.54571226	${}^{1}A_{2}(1b_{1}^{-1}2b_{2}^{-1})$	-392.10138109	${}^{3}\mathrm{B}_{1}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	-397.88709715
$^{1}A_{1}(1b_{1}^{-1}2b_{1}^{-1})$	-391.89364688	${}^{3}A_{2}(1b_{1}^{-1}2b_{2}^{-1})$	-392.10778991	$^{1}A_{1}(5a_{1}^{-2})$	-397.89702856
${}^{1}\mathrm{B}_{1}(3\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	-391.92272791	${}^{1}\mathrm{B}_{2}(3a_{1}^{-1}2b_{2}^{-1})$	-392.11116374	$^{1}A_{2}(2b_{1}^{-1}2b_{2}^{-1})$	-397.96117751
$^{1}A_{2}(2b_{1}^{-1}1b_{2}^{-1})$	-391.93409866	${}^{3}\mathrm{B}_{2}(3\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	-392.11196153	$^{3}A_{2}(2b_{1}^{-1}2b_{2}^{-1})$	-397.99345391
${}^{3}B_{1}(3a_{1}^{-1}2b_{1}^{-1})$	-391.94040548	${}^{3}A_{1}(1b_{2}^{-1}2b_{2}^{-1})$	-392.12382102	${}^{1}B_{2}(5a_{1}^{-1}2b_{2}^{-1})$	-398.02619840
$^{3}A_{1}(1b_{1}^{-1}2b_{1}^{-1})$	-391.94593051	${}^{1}A_{1}(4a_{1}^{-2})$	-397.06870917	${}^{3}\mathrm{B}_{2}(5\mathrm{a}_{1}^{-1}2\mathrm{b}_{2}^{-1})$	-398.07858230
$^{3}A_{2}(2b_{1}^{-1}1b_{2}^{-1})$	-391.94797578	${}^{1}\mathrm{B}_{1}(4\mathrm{a}_{1}^{-1}2\mathrm{b}_{1}^{-1})$	-397.29553406	$^{1}A_{1}(2b_{2}^{-2})$	-398.11993149
$^{1}A_{1}(3a_{1}^{-1}5a_{1}^{-1})$	-391.94872814	$^{1}A_{1}(4a_{1}^{-1}5a_{1}^{-1})$	-397.48514587	_	
${}^{1}\mathrm{B}_{2}(5\mathrm{a}_{1}^{-1}\mathrm{1b}_{2}^{-1})$	-391.98547668	${}^{3}B_{1}(4a_{1}^{-1}2b_{1}^{-1})$	-397.51106502		

Figure 1: $L_1L_{2,3}M$ Coster-Kronig spectrum of argon. Partial decay widths were computed with CBF-EOM-CCSD and the aug-cc-pCV5Z basis set augmented by 4 (gray), 6 (brown), and 8 (black) complex-scaled s, p, and d shells.

Figure 2: L₁MM Auger spectrum of argon. Partial decay widths were computed with CBF-EOM-CCSD and the aug-cc-pCV5Z basis set augmented by 4 (gray), 6 (brown), and 8 (black) complex-scaled s, p, and d shells.

Figure 3: L₁L_{2,3}M Coster-Kronig spectrum of hydrogen sulfide. Partial decay widths were computed with CBF-EOM-CCSD and the aug-cc-pCVTZ(5sp) basis set augmented by 4 (gray), 6 (brown), and 8 (black) complex-scaled s, p, and d shells.

Figure 4: L_1MM Auger spectrum of hydrogen sulfide. Partial decay widths were computed with CBF-EOM-CCSD and the aug-cc-pCVTZ(5sp) basis set augmented by 4 (gray), 6 (brown), and 8 (black) complex-scaled s, p, and d shells.