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1 Methods of Resolution
The studied moiré interlayer exciton with an applied electric field can be described by the envelop Schrödinger equation in the effective
mass approximation as follows:

ĤixΨ
n,ℓ
J,L(r,θ ,R,Φ) = En,ℓ

J,L(∆F⊥(//))Ψ
n,ℓ
J,L(r,θ ,R,Φ). (1)

Here, the eigenvalue En,ℓ
J,L(∆F⊥(//)) defines the total energy, which can be determined by direct diagonalization of Ĥix(∆F⊥(//)) into the

basis Ψ
n,ℓ
J,L(r,θ ,R,Φ) = φn,ℓ(r,θ)×ΞJ,L(R,Φ). Here, φn,ℓ(r,θ) and ΞJ,L(R,Φ) are the solutions of the internal and center-of-mass motion

problems, respectively. The eigenstate φn,ℓ(r,θ) adequately corresponds to the 2D hydrogen wavefunction in polar coordinates as2:

φn,ℓ(r,θ) =
Rn,ℓ(r)

aB
√

2π
eiℓθ . (2)

Here, n and ℓ represent the principal quantum number and the angular momentum, respectively. For n = 1,2,3, ... and −(n− 1) ≤ ℓ ≤
(n−1), the states are (2n−1) fold degenerate, labeled as s for ℓ= 0, p for ℓ=±1, and d for ℓ=±2. The radial part is expressed in terms

of Laguerre polynomials as: Rn,ℓ(r) =Cn,ℓe
− rαn

2aB (αn
r

aB
)|ℓ|L2|ℓ|

n−|ℓ|−1(αn
r

aB
). Here, Cn,ℓ =

4
(2n−1)

3
2

(
(n−|ℓ|−1)!
(n+|ℓ|−1)!

) 1
2 is the normalization constant

and αn =
4

2n−1 .
On the other hand, the center-of-mass eigenstate ΞJ,L(R,Φ) is given by the 2D harmonic oscillator basis, which is expressed in polar

symmetry as1,2:

ΞJ,L(R,Φ) =
eiLΦ√
2πΛJ,L

YJ,L(R). (3)

Here, J and L (−J ≤ L ≤ J) represent the principal quantum number and the angular momentum, respectively. Careful consideration is

necessary in the choice of L, where J −|L| must be an even number, and the total state degeneracy will be J +1. ΛJ,L =
R2

c
2 (

J−|L|
2 +1)|L|

a Laboratoire de Physique des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Tunisie; E-mail: hannachi.houssemedine@fsb.ucar.tn
b Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar, Tunisie; E-mail: sihem.jaziri@fsb.rnu.tn

Journal Name, [year], [vol.], 1–3 | 1

Supplementary Information (SI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024



is a normalization factor, and (x)n =
Γ(x+n)

Γ(x) is the Pochhammer symbol. The radial part YJ,L(R) = ( R
Rc
)|L|e

− R2

2R2c L|L|
J−|L|

2

(R2/R2
c), with Lb

a(x)

being the Laguerre polynomials.

1.1 Internal Motion: Binding Energy

To accurately model the exciton binding energy under an external electric field, we numerically solve the Mott-Wannier exciton equation:

ĤIMφn,ℓ(r,θ) = En,ℓ(∆F//(⊥))φn,ℓ(r,θ). (4)

Here, the term ĤIM = HIM + ξ (∆F//(⊥)) is defined, where En,ℓ represents the relative energy. We define the binding energy as

Eb
n,ℓ(∆F//(⊥)) =−En,ℓ(∆F//(⊥)), and their corresponding eigenvectors |ψn,ℓ⟩= ∑n,|ℓ|<n Cñ,ℓ̃

n,ℓ(∆F//(⊥))|φn,ℓ⟩ for both intralayer and interlayer

excitons. Here, Cñ,ℓ̃
n,ℓ are the dominant coefficients of the eigenvectors, which can be determined through the numerical diagonaliza-

tion of equation (4). The electric field dependence of these coefficients is crucial for exploring the exciton Stark effect and orbitals
hybridization.

1.2 Center-of-Mass Motion

In our model, we anticipate that the in-plane electric field affects only the internal motion and has no impact on the interlayer exciton’s
center-of-mass motion. Conversely, the out-of-plane electric field is expected to influence the center-of-mass energies due to the second
term appearing in equation (??). To determine the out-of-plane electric field dependence of interlayer exciton center-of-mass energies,
we solve the following center-of-mass Schrödinger equation:

ĤCMΞJ,L(R,Φ) = EJ,L
cm (∆F⊥)ΞJ,L(R,Φ). (5)

Here, ĤCM = HCM + Vs(R,Φ), and EJ,L
cm are the center-of-mass eigenvalues with the corresponding eigenvectors χJ,L(R,Φ) =

∑J̃,L̃ AJ̃,L̃
J,L(∆F⊥)ΞJ,L(R,Φ), where AJ̃,L̃

J,L(∆F⊥) represents the dominant coefficients of the eigenvectors obtained through the numerical
diagonalization of equation (5). This investigation provides information on the center-of-mass energy shift and modifications to the
center-of-mass orbital due to the effect of the out-of-plane electric field.

2 Photoluminescence and Moiré Exciton Lifetime
Once the electric field dependence of the moiré interlayer exciton energy spectra is determined by numerically diagonalizing the internal
and center-of-mass Hamiltonians into their respective bases, we proceed to analyze the photoluminescence spectra and the radiative
lifetime under varying electric field strengths. The one-photon photoluminescence (PL) spectra of moiré IX at low temperatures can be
approximated to be proportional to the oscillator strength and calculated using the following formula2,3:

PL = f osc
nℓ,JLΘ(h̄ωp −EIX

nℓ,JL). (6)

Here, f osc
nℓ,JL represents the oscillator strength, and its simplified expression is given by2:

f osc
nℓ,JL =

m0

me

Eg

EIX
nℓ,JL

∑
n′ℓ′,J′L′

Dnℓ,JL
n′ℓ′,J′L′ |φn′,ℓ′(r = 0)|2|

∫
ΞJ′,L′(R)d2R|2. (7)

With, Θ(h̄ωp −EIX
nℓ,JL) =

Γ0

π((h̄ωp −EIX
nℓ,JL)

2 +Γ2
0

defines the energy conservation with respect to the state broadening Γ0, where h̄ωp

is the photon energy. Γ0 defines the half width at half maximum of the IX line. Dnℓ,JL
n′ℓ′,J′L′ is the dominant coefficient of the eigenvectors

obtained by numerical diagonalization of total Hamiltonian. EIX
nℓ,JL = Eg + Enℓ

JL is the localized interlayer exciton energy, Eg is the

heterobilayer band-gap energy and the IX total energy is approximated as Enℓ
JL = En,ℓ+EJ,L

cm . Furthermore, the radiative decay rate of
the localized IX, as a function of the oscillator strength and moiré IX energy, is expressed as2,3:

τrad =
3m0h̄2c3

4n0e2
1

EIX
1s,00 f osc

1s,00
. (8)

Here, n0 =
√

ε denotes the effective optical refraction index of the environment, c is the speed of light and EIX
1s,00 represents the moiré

interlayer exciton ground state energy.

3 Additional results
Figures 1(a) and 1(b) illustrate the dependence of the interlayer exciton ground state Stark shift on the strength of the in-plane electric
field across various values of the average dielectric environment ε and the spacing separation d, respectively. These results demonstrate
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Fig. 1 Figures (a) and (b) depict the 1s ground state Stark shift of IX as a function of the in-plane electric field strength, considering various values
of the effective dielectric environment ε and spacing separation d (A°) , respectively.

a considerable increase in the Stark shift when either ε or d is increased. It’s important to note that as ε increases, the exciton’s
binding energy spectrum considerably decreases, leading to a less bound exciton. Consequently, the exciton becomes more susceptible
to the electric field perturbation, as illustrated in figure 1(a). This assessment holds significant interest in optical materials modulation,
wherein the spatial separation between the two layers can be controlled using hBN layers, a well-known technique.
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