Electronic Supplementary Material

Ultrasound-assisted nucleation and growth of hydroxyl-protected and

ligand-free Cs₃Cu₂X₅ nanocrystals with bright luminescence

Zhiqun Xu¹[†], Dengfeng Luo^{2,5}[†], Pei Wu³, Bo Hou¹, Zhihao Zhang¹, Shuqiang Wang⁴,

Teng Gao⁴, Guobin Huang^{4,*}, Lan Fang^{1,*}

¹Suzhou Chien-shiung Institute of Technology, Taicang, 215411, China

²Peng Cheng Laboratory, Shenzhen 518055, China

³ University of Chinese Academy of Sciences, Beijing, 100049, China

⁴Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou,

350108, China

⁵ Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

* Corresponding author:

Lan Fang; E-mail address: fanglanlan0813@163.com

Guobin Huang; E-mail address: 211310028@fzu.edu.cn

† These authors contributed equally to this work.

1. Experimental section

1.1 Instrumentation.

The X-ray diffraction (XRD) patterns were recorded on an Ultima IV (Rigaku, Japan) diffractometer and Cu Karadiation ($\lambda = 0.154$ nm) from 10° to 60°. The photoluminescence excitation (PLE) and photoluminescence (PL) spectra were acquired utilizing an F-4600 fluorescence spectrophotometer (Hitachi, Japan). The time-resolved PL spectra (TRPL) and photoluminescence quantum yields (PLQYs) of samples were determined by using an FLS-980 spectrometer (Edinburgh, U.K.). The ultraviolet-visible absorption spectra were examined employing a UV-2600i UV-vis spectrophotometer (Shimadzu, Japan). The transmission electron microscopy (TEM) images and elemental mapping spectrum were obtained using a JEOL JEM-2100 F system (Rigaku, Japan). Chemical states were measured using a K-Alpha+ X-ray photoelectron spectroscopy (Thermo Fisher Scientific, U.S.A.). An ultrasound-assisted crusher (KMH1-720U) with a nominal frequency of 40 kHz and a net output power of 800 W was used for the synthesis of Cs₃Cu₂X₅ halide solutions.

1.2 DFT calculations section.

The Cs₃Cu₂X₅, CsX, and CuX unit cell was used for periodic DFT investigations using the VASP code^[1-3]. They were treated as valence electrons, and their interactions were described by the projected augmented wave (PAW) approach^[4]. The binding energies (E_b) of different solvents with precursors surface were calculated as $E_{precursors/solvents} - E_{precursors} - E_{solvents}$, where $E_{precursors/solvents}$, $E_{precursors}$, and $E_{solvents}$ are the total energies of the adsorption system, the precursors system and solvents crystals, respectively. The generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was applied^[5]. The K points considered about the symmetry of the crystal structures were used to sample the Brillouin zone, and the cutoff energy of the plane-wave basis was set to 500 eV.