Supplementary Information

for

Strain evolution from ferroelectric to relaxor state in (0.67-x)BiFeO₃-0.33BaTiO₃-

xBi(Mg_{0.5}Zr_{0.5})O₃ lead free ceramics

Jiaqing Feng, Yiting Zhang, Xilong Song, Zixin Liu, Chen Liao, Lin Zhao, Bo Wu*,

Hong Tao, Jian Ma

Sichuan Province Key Laboratory of Information Materials, Southwest Minzu

University, Chengdu, 610225, P. R. China.

* Corresponding author: <u>wubo7788@126.com</u>

Figure S1. SEM images and grain size distributions of BF-BT-*x*BMZ ceramics: (a) x = 0.02; (b) x = 0.06; (c) Element mapping of 0.63BF-0.33BT-0.04BMZ ceramic.

Figure S2. the ε_r -*T* curves of each component measured at 25-600 °C.

Figure S3. bipolar and unipolar strain curves and *P*-*E* loops at different temperature (a) x = 0.02; (b) x = 0.06.

Materials	<i>d</i> ₃₃ (pC/N)	Reference
PNN-PZT- <i>x</i> LN	~1178 pC/N	[1]
BF-BT- <i>x</i> BA	~283 pC/N	[2]
BF(MN)(<i>x</i>)-BT-BNT	~240 pC/N	[3]
0.75BF-0.25BZT	~138 pC/N	[4]
0.34BF-0.33BT-0.33BG	~402 pC/N	[5]
BF-BT	~170 pC/N	This work
BF-BT-0.04BMZ	~35 pC/N	This work
BF-BT-0.08BMZ	~10 pC/N	This work

Table S1. Piezoelectric property of piezoelectric ceramics.

Figure S4. The J-E loops of BF-BT-*x*BMZ at different temperature.

Table S2. Leakage current density of BF-BT based material systems.

Materials	$J (\mathrm{mA/cm^2})$	Temperature (°C)	Reference
0.75BF-0.25BT	~0.4-2.1 mA/cm ²	20-100 °C	[6]
0.65BF-0.35BT	~0.9-2.6 mA/cm ²	20-100 °C	[6]
0.55BF-0.45BT	~0.9-1.1 mA/cm ²	20-100 °C	[6]
$Bi_{0.8}(Sr_{0.5}Ca_{0.5})_{0.2}Fe_{0.8}Ti_{0.2}O$	$\sim 1.5 \text{ mA/cm}^2$	Room-tem	[7]
3			
$Bi_{0.6}(Sr_{0.5}Ca_{0.5})_{0.4}Fe_{0.6}Ti_{0.4}O$	$\sim 0.9 \text{ mA/cm}^2$	Room-tem	[7]
3			
0.73BF-0.27BTGT	$\sim 1.2 \text{ mA/cm}^2$	Room-tem	[8]
0.67BF-0.33BT	~0.2-0.6 mA/cm ²	30-120 °С	This work

Figure S5. Phase images of ceramics (a) and (b) x = 0; (c) and (d) x = 0.04; (e) x = 0.08.

REFERENCE

[1] W Peng, J L Chang, et al. Ultrahigh piezoelectricity of PNN-PZT ceramics via constructing defect dipoles, Ceram. Int. 50(4) (2024) 6598-6605.

[2] X X Zhou, Y C Tang, et al. BiAlO₃-modified BiFeO₃-BaTiO₃ high Curie temperature lead-free piezoelectric ceramics with enhanced performance, Rare Metals, 2023, 42(11): 3839-3850.

[3] A W Xie, M S Wang, et al. Superior lead-free high-temperature piezoceramics of BiFeO₃-BaTiO₃-(Bi_{0.5}Na_{0.5})TiO₃ through cooperative regulation, J. Mater. Chem. A, 2023, 11(16): 9066-9073.

[4] J G Chen, J R Cheng. High Electric-Induced Strain and Temperature-Dependent Piezoelectric Properties of 0.75BF–0.25BZT Lead-Free Ceramics, J. Am. Ceram. Soc, 2016, 99(2): 536-542.

[5] M H Lee, D J Kim, J S Park, et al. High-Performance Lead-Free Piezoceramics with High Curie Temperatures, Adv. Mater. 27(43) (2015) 6976-6982.

[6] C Y Li, T Zheng, J G Wu. Competitive mechanism of temperature-dependent

electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution, Acta. Mater, 2021, 206: 116601.

[7] J Liu, X Q Liu, X M Chen. Significantly enhanced ferroelectricity and magnetic properties in (Sr_{0.5}Ca_{0.5})TiO₃-modified BiFeO₃ ceramics, J. Appl. Phys, 2015, 117(17): 174101.

[8] X T Guo, Y Sun, L L Liu, et al. Effect of different ionic valence state doping on the structure and characteristic of BiFeO₃-BaTiO₃-based ceramics. Int. J. Appl. Ceram. Tec, 2024, 21(3): 1688-1699.