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Appendix 1: Derivation of the values of wm for

W (γ) = sin(γ)

We derive the values for {wm} as done in Kayser and Raveché [1] but for the ODF normal-
ization used herein. We are expressing W (γ) = sin(γ) as the series

∑∞
m=0wmPm(cos γ).

The following known integral involving Legendre polynomials Pm [2, page 798 equa-
tion 7.132.1] naturally arises when expanding W (γ) = sin(γ) as a linear combination
of Legendre polynomials Pm(cos γ). Since this W satisfies W (π − γ) = W (γ), and
Pm(−x) = −Pm(x) for m odd, wm will be 0 for odd integers m, and so we only need
the result when m = 0 or when m = 2n is an even positive integer:

∫ 1

−1
(1− x2)

1
2 P2n(x) dx =

πΓ(3/2)Γ(3/2)

Γ(n+ 2)Γ((3/2)− n)Γ(n+ 1)Γ((1/2)− n)
(S.1)

Using the change of variable x = cos(γ) in the integral on the left side of the above, one
finds
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∫ 1

−1
(1− x2)

1
2 P2n(x) dx =

∫ π

0

sin2(γ)P2n(cos γ) dγ (S.2)

and one then also has the right side of equation (S.1) from page 338 equation 8.14.16 in
[3], or page 172, equation (27) in [4]. Note in some sources (other edition(s) of [2], page
316 equation (16) in [5]), there is a typographical error in this formula, having (in error)
Γ(n + (5/2)) instead of the correct Γ(n + 2). One can quickly check that the incorrect
version can not be valid from the case n = 0, since

∫ π
0

sin2(γ) dγ = π/2.

For W (γ) = sin(γ) we have

W (γ) =
∞∑

m=0,2

wmPm(cos γ)

where the notation means sum over m = 0 and positive even integers. Let k = 0 or let
k = 2n be an even positive integer, and recall that

1

2

∫ π

γ=0

Pm(cos γ)Pn(cos γ) sin(γ) dγ =
1

2

∫ 1

−1
Pm(x)Pn(x) dx = δmn

1

(2n+ 1)
(S.3)

where δmn is 1 when m = n and 0 otherwise (see, for example, Chapter 11 of Weber and
Arfken [6]). Then

∫ π

γ=0

W (γ)Pk(cos γ) sin(γ) dγ =

∫ π

γ=0

wkPk
2(cos γ) sin(γ) dγ =

2wk
2k + 1

(S.4)

However, the left hand side of the equation above is (for W (γ) = sin(γ)):

∫ π

γ=0

sin2(γ)Pk(cos γ) dγ (S.5)

so from equations (S.2) and (S.1), we have (with k = 2n):

2wk
2k + 1

=
πΓ(3/2)Γ(3/2)

Γ(n+ 2)Γ((3/2)− n)Γ(n+ 1)Γ((1/2)− n)
(S.6)

It will be convenient for the rest of this subsection to define

vn = wk which is w2n (S.7)
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Then we have

vn = w2n =
4n+ 1

2

πΓ(3/2)Γ(3/2)

Γ(n+ 2)Γ((3/2)− n)Γ(n+ 1)Γ((1/2)− n)
(S.8)

To display the first several values of vn = w2n we need some values of the Γ function,
available from its basic properties, e.g., [3], [6]:

Γ(1/2) = π1/2, Γ(3/2) = π1/2/2, Γ(−1/2) = −2π1/2, Γ(−3/2) = (4/3)π1/2 (S.9)

Using these in equation (S.8), we find, as in the Appendix of [7] but with adjusted notation:

v0 = π/4, v1 = −5π/32, v2 = −9π/256, v3 = −65π/212 (S.10)

Using Γ(z+ 1) = z Γ(z) and so also Γ(y− 1) = Γ(y)/(y− 1) with equation (S.8), we have
for n ≥ 2 (cf. the Appendix in [7] but note the different notation, m there is 2n here):

vn+1 = vn(16n3 + 20n2 − 4n− 5)/(16n3 + 52n2 + 44n+ 8) (S.11)

which shows that all of the w2n are negative for n > 0. We can use Raabe’s test to show
that the series

∑∞
n=0 vn is absolutely convergent, since

ρ ≡ lim
n→∞

n(
vn
vn+1

− 1) is 2

(which is > 1 so sufficient for convergence).

Note using equations (S.10) and (S.11) one can verify that the eigenvalues λ2n in equation
(2.12) of Kayser and Raveché [1] based on their scaling convention are equal to 8vn/[π(4n+
1)].

Appendix 2: Derivation of the expansion of K(θ1, θ2)

in terms of Legendre polynomials

We provide this expansion following Kayser and Raveché [1], but for our normalizations.
The situation here is a particular case of integral operators with symmetric kernels [8].
A special result for Legendre polynomials made use of in [1], [7] and here is the addition
formula due to Laplace, available in [9], or page 1274 equation 10.3.38 in [10], or page
1015 addition theorem 8.814 in [2]:
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With γ given by Arc cos[sin(θ1) sin(θ2) cos(φ) + cos(θ1) cos(θ2)], and n > 0 (S.12)

one has

Pn(cos γ) = Pn(cos θ1)Pn(cos θ2) + 2
n∑

m=1

(n−m)!

(n+m)!
P m
n (cos θ1)P

m
n (cos θ2) cos(mφ) (S.13)

where the P m
n are associated Legendre polynomials and recall P0(x) ≡ 1. Now, for the

expansion we want, recall that:

K(θ1, θ2) =
1

2π

∫ 2π

φ=0

W (γ = Arc cos[sin(θ1) sin(θ2) cos(φ) + cos(θ1) cos(θ2)]) dφ (S.14)

We are expressing W (γ) as a series in Pm(cos γ):

W (γ) =
∞∑
m=0

wmPm(cos γ) (S.15)

Substituting equation (S.15) with γ as in equation (S.12) into equation (S.14) and using
the addition formula equation (S.13), we see that the integral over φ “removes” the
associated Legendre polynomials P m

n and we have

K(θ1, θ2) =
∞∑
m=0

wmPm(cos θ1)Pm(cos θ2) (S.16)

Now if B(f) is defined to be the last term on the right in

F (f(θ)) =

A+
1

2

∫ π

θ=0

f(θ) ln f(θ) sin(θ) dθ +
1

2

∫ π

θ=0

f(θ)V (θ) sin(θ) dθ +

B

2

∫ π

θ1=0

∫ π

θ2=0

1

4
f(θ1) sin(θ1)K(θ1, θ2)f(θ2) sin(θ2) dθ2 dθ1 (S.17)

so
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B(f) =
B

2

1

2

∫ π

θ1=0

1

2

∫ π

θ2=0

f(θ1) sin(θ1)K(θ1, θ2)f(θ2) sin(θ2) dθ2 dθ1 (S.18)

and we substitute f expanded in terms of Legendre polynomials,

f(θ) =
∞∑
n=0

(2n+ 1)ηnPn(cos θ) with ηn =
1

2

∫ π

θ=0

f(θ)Pn(cos θ) sin(θ) dθ (S.19)

and K given by equation (S.16) into equation (S.18), and recall equation (S.3), we are
left with (cf. equation (9) in [7]):

B(f) =
B

2

∞∑
m=0

wmηm
2 (S.20)

Appendix 3: Justifying the expansion of f (θ) as a series

in {Pn(cos θ)}

We could appeal to Sturm–Liouville theory on L2([0, π]) with the weighted measure dµ =
sin(θ) dθ, as in, for example, Al-Gwaiz [11], but here a direct approach suffices. Recalling
that

1

2

∫ π

θ=0

Pm(cos θ)Pn(cos θ) sin(θ) dθ =
1

2

∫ 1

−1
Pm(x)Pn(x) dx = δmn

1

(2n+ 1)

define the orthonormal Legendre polynomials by

Pn(x) = [(2n+ 1)/2]1/2Pn(x) (S.21)

Since the Legendre polynomials {Pn(x)} span the polynomials on [−1, 1], e.g., pages 506 -
507 in [6], and polynomials are dense in the space of continuous functions C([−1, 1])
with the maximum norm by the Stone-Weierstrass theorem, e.g., page 159 in [12], and
continuous functions are dense in the space of square integrable functions L2([−1, 1]), e.g.,

page 71 in [13] (with the L2 norm ‖f2 − f1‖2 defined to be (
∫ 1

−1(f2(x) − f1(x))2 dx)1/2),

then for any continuous (or L2) function f̃(x) on [−1, 1], there are unique constants {ξj}
such that
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∫ 1

−1

[
f̃(x)−

J∑
j=0

ξjPj(x)
]2
dx→ 0 as J →∞ (S.22)

and also

∞∑
j=0

ξj
2 =

∫ 1

−1
f̃ 2(x) dx (S.23)

L2 with its associated norm is the “natural” function space / setting in which to consider
expansions in terms of Legendre polynomials (and many other special functions, including
classical Fourier series).

Now if f(θ) is a continuous function on [0, π], define f̃(x) = f(Arc cos(x)), and let {ξj}
be as in the two equations above. Then using the change of variable x = T (θ) ≡ cos(θ),

∫ 1

−1

[
f̃(x)−

J∑
j=0

ξjPj(x)
]2
dx =

∫ π

0

[
f(θ)−

J∑
j=0

ξjPj(cos θ)
]2

sin(θ) dθ → 0 as J →∞

(S.24)

so f(θ) admits a unique expansion in terms of {Pn(cos θ)} and therefore also in terms of
{Pn(cos θ)}; and note when f(π− θ) = f(θ) and so f̃(−x) = f̃(x), the coefficients for the
odd indexed Legendre polynomials vanish, and similarly for W (γ) = sin(γ).

From equation (S.21) and {Pn(x)} being orthonormal, we have

ηm =
1

2

∫ π

θ=0

f(θ)Pm(cos θ) sin(θ) dθ =
[ 2

(2m+ 1)

]1/21

2

∫ 1

−1
f̃(x)Pm(x) dx =

[ 2

(2m+ 1)

]1/21

2
ξm

(S.25)

and hence
∑∞

m=0 ηm
2 is finite and

∑∞
m=0,2wmηm

2 would be bounded even if all we knew
was that {wm} was bounded.

Appendix 4: The “hat” function construct used in

proving a standard result in the calculus of variations

That
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ln f(θ1) = −B
2

∫ π

θ2=0

K(θ1, θ2)f(θ2) sin(θ2) dθ2 − V (θ1)− λ (S.26)

where the constant λ corresponds to the Lagrange multiplier for the normalization con-
straint 1

2

∫ π
θ1=0

f(θ1) sin(θ1) dθ1 = 1 follows from

1

2

∫ π

θ1=0

g(θ1)
[

ln f(θ1) + V (θ1) +
B

2

∫ π

θ2=0

K(θ1, θ2)f(θ2) sin(θ2) dθ2
]

sin(θ1) dθ1

being 0 for any continuous function g(θ) on [0, π] for which
∫ π
0
g(θ) sin(θ) dθ = 0 and

max |g(θ)| is sufficiently small is a consequence of the following lemma. The standard
“hat” function construct used in the proof is helpful for the discussion in Section 3.4.2

Suppose v(x) is a continuous function on [0, π], and for all functions g(θ) which are
continuous on [0, π] and satisfy

∫ π
0
g(θ) sin(θ) dθ = 0 and, for some fixed positive constant

k, max |g| ≤ k, it is true that

∫ π

θ=0

g(θ)v(θ) sin(θ) dθ = 0 (S.27)

Then v(x) equals a constant on [0, π].

This follows since otherwise, by continuity, there are two values 0 < θ1 6= θ2 < π with
v(θ1) < v(θ2). We can then construct a function g for which equation (S.27) fails. Define
the “hat” (or “tent” or “spike” or “upside-down” V) function H(θ; θc, h, ε) to be the
piecewise linear function which is 0 at θ = θc − h; ε at θ = θc; and 0 at θ = θc + h; and 0
outside of [θ−h, θ+h], so the support of H is [θ−h, θ+h]. If we take ε and h sufficiently
small and define g by

g(θ) = H(θ; θ2, h, ε)/ sin(θ)−H(θ; θ1, h, ε)/ sin(θ)

then 0 and π will be outside of the support of g so there will be no issue with dividing by
sin(θ), and

∫
g(θ)v(θ) sin(θ) dθ will not be 0, while g satisfies

∫ π
0
g(θ) sin(θ) dθ = 0, and

max |g| ≤ k.

If the condition
∫ π
0
g(θ) sin(θ) dθ = 0 were not required, then v would have to be 0 and

only one hat function would needed for the proof.
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Appendix 5: Locations of bifurcations from the isotropic

ODF for general W

When V = 0, the isotropic ODF, f = 1, is always a solution to the calculus of variations
equation (S.26). Here it is shown that potential locations of bifurcation points for (S.26)
can readily be found in terms of the coefficients wm in the expansion of W (γ) when V = 0
and ODFs are assumed to be cylindrically symmetric.

Given

f(θ) = η0 +
∞∑
m=1

(2m+ 1)ηmPm(cos θ) where η0 = 1 (S.28)

W (γ) =
∞∑
n=0

wnPn(cos γ) with wn ≤ 0 for n > 0, and
∞∑
n=0

|wn| finite. (S.29)

and

V (θ) =
∞∑
r=0

vrPr(cos θ) (S.30)

and using the orthogonality of the Legendre polynomials

1

2

∫ π

θ=0

Pm(cos θ)Pn(cos θ) sin(θ) dθ =
1

2

∫ 1

−1
Pm(x)Pn(x) dx = δmn

1

(2n+ 1)
(S.31)

and the expression for the particle interaction contribution to the free energy developed
in Appendix 2, the free energy F can be written as

F (f(θ)) = A+
1

2

∫ π

θ=0

f(θ) ln f(θ) sin(θ) dθ +
∞∑
r=0

vrηr +
B

2
w0 +

B

2

∞∑
m=1

wmηm
2 (S.32)

A necessary condition for f to be a local minimum of F is that, for each k > 0, the partial
derivative of F with respect to ηk

∂F (f(θ))

∂ηk
=

1

2

∫ π

θ=0

[(1 + ln f(θ))(2k + 1)Pk(cos θ)] sin(θ) dθ + vk +Bwkηk (S.33)
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is 0, which is equivalent to f in equation (S.28) being a solution of the calculus of variations
equation (S.26). When f = 1 the first term in the integral above is 0 from equation (S.31)
with m = 0. The last term is also 0 for the isotropic ODF. However, the middle term
is only 0 for all positive k when V is a constant. Restricting ourselves to that case, and
recalling (S.31), the only second partial derivatives that could be nonzero at the isotropic
ODF are the diagonal ones:

∂2F (f(θ))

∂ηk2
=

1

2

∫ π

θ=0

(1/f(θ))(2k + 1)2Pk
2(cos θ) sin(θ) dθ +Bwk (S.34)

At the isotropic ODF,

∂2F (f(θ))

∂ηk2
= (2k + 1) +Bwk (S.35)

If for a given B, this is positive for all k > 0, then the isotropic ODF will be a local
minimum.

By inspection of (S.35), since k and B are positive, only negative wk can contribute to
instability of the isotropic state. For a given positive integer k with wk < 0,

Bk = (2k + 1)/(−wk) (S.36)

is the value of B at which (S.35) transitions from positive to negative as B increases.
The smallest Bk, denoted by B∗, is the location beyond which the isotropic ODF is no
longer a local minimum of F and at which one would in general expect to see a branch of
anisotropic local minima. Although each Bk is a value at which there may be a branch
of non-isotropic solutions of the calculus of variations equation (S.26), bifurcations from
values of Bk > B∗ generally do not give rise to local minima of F . Moreover, since the
series for W is assumed to be absolutely convergent, |wk| must go to 0 with increasing
k, so there can only be a finite number of k for which Bk is equal to a given Bj. If this
number is odd, then there will be a branch of anisotropic solutions of (S.26) at Bj Vollmer
[14], Rabinowitz [15].

From the above, for the Onsager kernel W (γ) = sin(γ) for which the odd index wk are
0 and w2 = −5π/32 (see Appendix 1), B∗ will be B2 = 32/π. For the dipolar kernel
W (γ) = − cos(γ) = −P1(cos γ) for which w1 = −1, the only Bk is B1 = 3. For the
Maier–Saupe kernel W (γ) = 1

3
− cos2(γ) = −2

3
P2(cos γ) for which w2 = -2/3, the only Bk

is B2 = 15/2. These bifurcation locations agree, as expected, with those found in previous
work (after accounting for differences in normalization and notation) [1], [14], [16], [17].
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