Supplemental Material:

The multiple topological phases in a new family of compounds ACrTe (A = Na, K, Rb, Cs) predicted by first-principles calculations

Shuaiqi Peng,^{1,2} Qing Wang,^{1,2,*} Xinliang Huang,^{1,2} and Ning Hao^{1,†}

¹Anhui Key Laboratory of Low-Energy Quantum Materials and Devices,

High Magnetic Field Laboratory, HFIPS,

Chinese Academy of Sciences, Hefei Anhui 230031, China

²Science Island Branch of Graduate School,

University of Science and Technology of China, Hefei, Anhui 230026, China

(Dated: August 2, 2024)

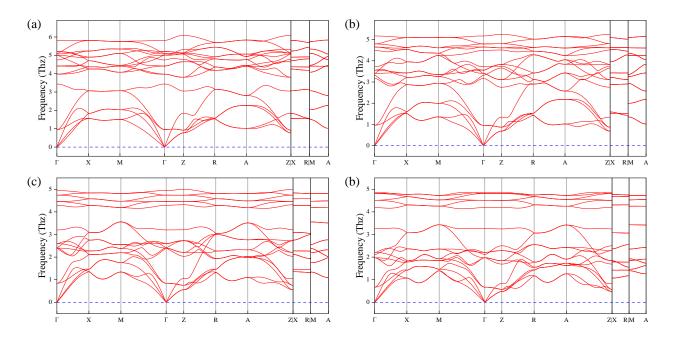


FIG. 1. Phonon spectrum for 3D bulk compound ACrTe(A = Na, K, Rb, Cs) (a)-(d) NaCrTe, KCrTe, RbCrTe and CsCrTe, respectively. In the calculation, the Hubbard U takes 3eV.

^{*} wq2018@mail.ustc.edu.cn

[†] haon@hmfl.ac.cn

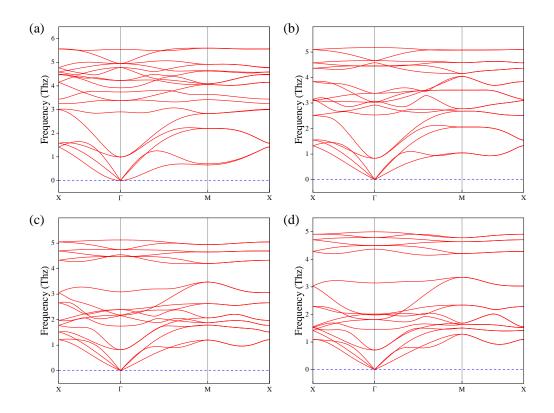


FIG. 2. Phonon spectrum for 2D monolayer case (a)-(d) NaCrTe, KCrTe, RbCrTe and CsCrTe, respectively. In the calculation, the Hubbard U takes 3 eV.

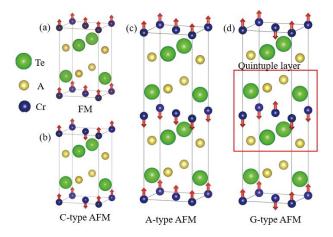


FIG. 3. 3D bulk crystal structure of ACrTe and the four considered magnetic configurations: (a) FM, (b) C-type AFM, (c) A-type AFM, and (d) G-type AFM.

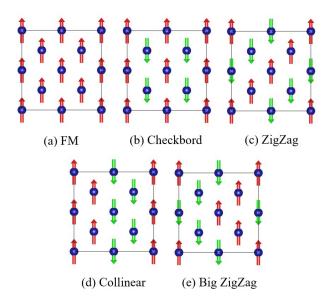


FIG. 4. Different magnetic configurations with 2×2 supercell studied for monolayer ACrTe class, including one ferromagnetic (FM) configuration and four antiferromagnetic (AFM) configurations as labeled.