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S1 Magnetic Configurations

S1.1 Geometries - Figures
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Figure S2: Ferromagnetic (FM) and all ferrimagnetic (FiM) spin conformations of the 2 x 2 x 1 MnyCO,
MXene for the T1 geometry. The greyed-out conformations turned out to be identical with a different
spin state. Different colors correspond to spin density - the residual spin-up (yellow) or spin-down (blue)

on each transition metal.
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Figure S3: All antiferromagnetic (AFM) spin conformations of the 2 x 2 x 1 Mn,COy MXene for the H1

geometry. The greyed-out conformations turned out to be identical with a different spin state. Different

on each transition
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S1.2 Energetics and Stability

Firstly, we did structural optimizations and ground-state calculations on all 28 conformers at the level of
PBE density functional. The results show, that even though spin conformation H1-AFM6 is the energy
ground-state, the energy differences between individual conformations are very small, not exceeding 0.25
eV, with the difference between the first two being only 27 meV. From the reported electronic band gaps
we can also see that some conformations exhibit semiconducting behavior while others have been shown
to be metallic.

From the results of electronic band gaps, we can see that the isomer H1-AFM1 should exhibit metallic
behavior. In the close-up part of its PBE band structure (ESI Fig. S6b) we can see that the conduction
band clearly crosses the Fermi energy and therefore the material is at the PBE level of theory classified as
a metal. It is however necessary to consider the nature of PBE and its band gap determination. DFT is
well known for underestimating the band gap and also materials that were wrongly predicted to be gapless
have exhibited a non-zero gap with the use of higher tier of exchange-correlation functionals. Therefore

we needed to continue at the higher level of theory.

Path in k-space

Figure S5: PBE band structure of HI-AFM3. The Fermi energy is set to zero.
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Figure S6: PBE bandstructure of (a) HI-AFM1 and (b) a close-up area near the Fermi energy, which is

set to zero.
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Table S1: Relative energies (R.E.) per unit cell (1x 1) at the level of PBE functional for T1 and H1 isomers
for all 28 calculated spin configurations and their direct and indirect band gaps. Solutions without band
gaps exhibit metallic behavior. For spin-polarized FM and FiM states, the lower value of the band gap is

reported. All energies are presented in eV.

Phase RE. EJ* EMr
H1-AFM6 0.0000 0.30 0.18
H1-AFM3 0.0266 0.16 0.05
H1-AFM1 0.0282 - -
H1-FiM8 0.0398 0.29 0.04
H1-FiM4 0.0430 - -
T1-AFM1 0.0521 0.37 0.24
H1-AFM2 0.0550 0.25 0.12
H1-AFM7 0.0579 0.53 0.51
H1-FiM3 0.0659 - -
H1-FiM1 0.0683 0.28 0.08
H1-FiM5 0.0895 0.14 0.14
T1-FiM6 0.0912 0.26 0.18
T1-AFM3 0.0930 0.28 0.19
T1-AFM2 0.0981 0.58 0.55
H1-FiM7 0.1052 0.34 0.26
Hi1-FiM2 0.1107 0.22 0.19
T1-AFM4 0.1181 0.26 0.09
T1-FiM3 0.1185 0.30 0.21
T1-FiM4 0.1209 0.29 0.14
T1-AFM5 0.1234 0.40 0.37
H1-AFMO 0.1426 0.66 0.40
T1-FiM5 0.1428 0.46 0.31

H1-FMO 0.1438 0.51 0.20
T1-FiM7 0.1565 0.58 0.54
T1-FiM1 0.1577 0.26 0.06
T1-FiM2 0.1663 0.41 041
T1-AFMO 0.2065 0.70 0.64
T1-FMO0 0.2225 0.32 0.25
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Table S2: Relative energies (R.E.) per unit cell (1 x 1) at the level of meta-GGA functional SCAN for
T1 and H1 isomers for all 28 calculated spin configurations and their direct and indirect band gaps. For
spin-polarized FM and FiM configurations, the lower value of the band gap is reported. The lattice
constant a of all spin solutions corresponds to the ground-state T1-AFM1. The last three columns show
the thermodynamical probability, exp(—E/kT), of a given state at temperature 7" = 10, 100 and 300 K.

All energies are presented in eV.

Phase  R.E. Er (B3 [ 10K [%] 100 K [%] 300 K [%]
TI-AFM1 0.000 0.73 (0.92) | 100.00 67.03 16.79
T1-FiM6 0.017 0.73 (0.87) | 0.00 9.31 8.69
HI-AFM1 0.018 0.26 (0.41) | 0.00 7.91 8.23
T1-AFM2 0.023 0.86 (1.13) | 0.00 4.53 6.84
T1-AFM3 0.024 0.64 (1.03) | 0.00 4.04 6.58
T1-FiM3 0.031 0.66 (0.66) | 0.00 1.89 5.11
T1-AFM4 0.037 0.58 (0.73) | 0.0 0.92 4.02
T1-FiM4 0.037 0.53 (0.70) | 0.00 0.90 4.00
T1-AFM5 0.041 0.74 (0.92) | 0.00 0.58 3.45
HI-FiM4 0.042 0.28 (0.48) | 0.00 0.54 3.37
HI-FiM3 0.043 0.28 (0.51) | 0.00 0.48 3.24
T1-FiM5 0.046 0.64 (0.76) | 0.00 0.34 2.89
HI-AFM3 0.047 0.40 (0.79) | 0.00 0.31 2.78
HI-AFM2 0.049 0.38 (0.78) | 0.00 0.23 2.55
TI-FiM1 0.049 0.37 (0.52) | 0.00 0.22 2.49
HI1-FiM1 0.053 0.37 (0.65) | 0.00 0.14 2.13
H1-FiM5 0.056 0.52 (0.75) | 0.00 0.11 1.96
T1-FiM2 0.056 0.54 (0.54) | 0.00 0.11 1.96
HI1-AFM6 0.057 0.58 (1.03) | 0.00 0.09 1.88
HI-FiM8 0.057 0.41 (0.88) | 0.00 0.09 1.85
TI1-FiM7 0.057 0.83 (0.95) | 0.00 0.09 1.84
H1-FIM2 0.060 0.48 (0.55) | 0.00 0.06 1.63
H1-FIM7 0.067 0.50 (0.90) | 0.00 0.03 1.24
HI-FMO 0.069 0.45 (0.45) | 0.00 0.02 1.17
HI1-AFM7 0.069 0.67 (1.07) | 0.00 0.02 1.17
T1-FMO  0.079 0.47 (0.47) | 0.00 0.01 0.79
HI1-AFMO 0.082 0.70 (1.06) | 0.00 0.00 0.70
TI-AFMO 0.085 1.25(1.11) | 0.00 0.00 0.64
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S1.3 Molecular Dynamics
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Figure S7: Mean energies from SCAN ab initio molecular dynamics simulations with a standard deviation
of the energies for the top five most favorable spin conformations of Mny,CO,. Mean energies correspond

to the 1 x 1 unit cell. Calculations were conducted on 6 x 6 supercells with 2 fs time steps for a total of

650 steps.
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S1.4 Phonon dispersion spectra
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Figure S8: PBE phonon dispersion spectra of (a) T1-FiM6 and (b) HI-AFM1.
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Figure S9: PBE phonon dispersion spectra of HI-AFM2.
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S1.5 Influence of the Strain
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Figure S10: The effect of biaxial strain on the indirect (E}"), direct (EJ") and T-point (Ej) electronic
band gap in five isomers of Mn,CO,. For the FiM6 configuration the values for different spins «, 5 are

presented.
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S2 Electronic and Optical Properties

S2.1 Band structures
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Figure S11: Band structures of Mn,COy MXene at various levels of computational DFT theory. (a) GGA
PBE, (b)-(e) PBE+U (Hubbard correction), (f) meta-GGA SCAN, (g)-(j) SCAN+U, and (k) hybrid
HSEO06. Only bands of one spin are visible as the spin-polarized bands are identical near the Fermi level.

Fermi energy is set to zero eV.
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Figure S12: Partial density of states (PDOS) of the MnyCOy MXene at various levels of computational
DFT theory. For C and O atoms, s and p states are considered, while d states are plotted for Mn atoms.
The remaining s and p states for Mn atoms are uncolored and outlined by black lines. (a) GGA PBE,
(b)-(e) PBE+U (Hubbard correction), (f) meta-GGA SCAN, (g)-(j) SCAN+U, and (k) hybrid HSE06.

Fermi energy is in all figures set to zero eV.



Table S3: Electronic indirect (E}"") and direct (E{") band gaps and magnetic moments m on Mn sites
at different levels of DFT theory including density functionals PBE and SCAN with Hubbard correction
U and hybrid functional HSEQ6.

Method EPMT (eV)  EJ* (eV) m (us)

PBE 0.25 0.37 2.601
PBE + 1eV 0.58 0.69 2.766
PBE + 2 eV 0.77 0.83 2.898
PBE + 3 eV 0.84 0.94 3.017
PBE + 4 eV 0.88 1.04 3.132

SCAN 0.73 0.92 2.728
SCAN + 1 eV 0.88 1.15 2.807
SCAN + 2 eV 0.99 1.28 2.904
SCAN + 3 eV 1.09 1.38 3.007
SCAN + 4 eV 1.17 1.47 3.118

HSE06 1.51 1.61 3.062

The electronic band gap obtained by using the Hubbard correction U = 3 eV, which was in previous
studies (Hu et al. 2016, He et al. 2016, Dahlqvist et al. 2020) recommended for Mn-based MXenes,
corresponds well with the native SCAN density functional without any empirical corrections. We, there-
fore, propose that the SCAN functional can describe the electronic band gap in Mn-based MXenes more
accurately than the hybrid HSE06 density functional.
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S2.2 Orbitals
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Figure S13: (a) The highest occupied orbital (HOMO) and (b) the lowest unoccupied orbital (LUMO) in
I' point for T1-AFMI1.

S2.3 Convergence of GW and BSE Results
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Figure S14: Convergence of optical absorption spectra (A,, = A,,) for TI-AFM1 Mn,CO, MXene at the
level of GWQSCAN + BSE with respect to the number of occupied (o) and virtual (v) bands used in
the final BSE step. The results were obtained with 6 x 6 x 1 k-point grid, ESY = 200 eV, L, = 20 A,
N = 3024 and N, = 128.
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Figure S15: Convergence of optical absorption spectra (A,, = A4,,), QP gap AFY and optical gap AOBpStE for

T1-AFM1 Mn,CO, MXene at the level of GWQSCAN + BSE. Dependence of optical absorbance, direct
ASWV and ABSE on (a)-(b) the number of bands Ng, (c)-(d) the GW cutoff energy ESY, (e)-(f) k-point grid

opt cut

density, (g)-(h) the height of the computational cell L, and (i)-(j) the number of frequency dependent grid
points N,,. The initial settings for each calculation was Ng = 3024, ESW = 200 eV, 6 x 6 x 1 k-point grid,

cut

L. =20 A and N,, = 128 with each computational parameter being changed in its respective calculation.



