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SUPPLEMENTARY TEXTS

Simulation Workflow

Algorithm S1 Workflow of the ReaxFF molecular simulation.
1: procedure ReaxFF-MD(k) . The k-th simulation
2: t=0 . Lifetime t initialization
3: i=1 . Fragment ID i initialization
4: Break_Flag=False
5: while Break_Flag=False do
6: Simulate the i-th fragment for 10 ps.
7: Check if molecule dissociate.
8: if Molecule does not dissociate then
9: t = t + 10 ps

10: i = i+ 1
11: else if Molecule dissociate at time t0 then
12: t = t + t0
13: Break_Flag=True
14: r = configuration of the molecule at t0
15: end if
16: end while
17: return t, r
18: end procedure

Due to the exponential distribution governing the lifetime of molecules, the dissociation

time in each simulation varies. Imposing a short time limit in the simulation may not

guarantee bond breaking, while setting a long simulation time limit might be inefficient

as many molecules may dissociate early. To balance these considerations, we implemented

the simulation workflow as listed in Algorithm S1: In each simulation, we conducted a

series of fragment simulations, with each fragment lasting for 10 ps. After completing a

fragment, we analyzed the data to determine if any molecular dissociation occurred. If the

molecule remained intact in the backbone, we extended the simulation by initiating the

next round of fragment simulation. This process continued until the moment of molecular

dissociation was identified, at which point the iteration was halted. This simulation strategy
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efficiently identifies the lifetime of both early and late dissociating molecules while minimizing

computational costs. Three representative simulation trajectories in the Supplementary

Material illustrate the dissociation of three molecules.

Diffusion Maps Nonlinear Manifold Learning

Figure S1: A toy model illustrates the distinction between diffusion maps and principal com-
ponent analysis (PCA). In (a), the original data form an intrinsically 2-dimensional nonlinear
’Swiss-roll’ structure within a 3-dimensional Euclidean space. The path connecting points A
and B traverses the nonlinear manifold. (b) Diffusion maps (dMaps) effectively extracts the
2D intrinsic manifold and represents it using the top eigenvectors. (c) In contrast, traditional
linear dimensionality reduction methods like principal component analysis (PCA) struggle
to capture the nonlinear manifold, as evidenced by the presence of overlapping points in the
space spanned by the top principal components.

Proposed by Coifman et al.,1–4 diffusion maps model data as a random walk or diffusion

process on an intrinsic low-dimensional manifold. This manifold can be nonlinear and curved,

embedded within a high-dimensional Euclidean space, as illustrated in Figure S1(a): data

points diffusing on the intrinsic 2D nonlinear Swiss-roll manifold in 3D Euclidean space.

The dMaps algorithm extracts intrinsic dimensions corresponding to the slowest diffusion

modes, as shown in Figure S1(b). For instance, from point A to B, the slowest diffusion

mode follows the arrow-dashed path in the Swiss-roll nonlinear manifold. In this regard,

dMaps outperforms regular linear approaches like principal component analysis (PCA), as

depicted in Figure S1(c). Previously, both our work and that of others have successfully

applied dMaps to various molecular dynamics (MD) simulation data, including protein and

alkane folding simulations, self-assembly of asphaltene, and patchy colloid particles.5–13
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In this research, we would apply dMaps to the equilibrated n-tridecane simulation data,

to find the effective dimensionality of its configuration and extract the low dimensional

collective variable. The first step is to compute the pairwise distance dij between each two

configurations ri, rj from equilibrium simulation trajectory, and i, j = 1, 2, 3, · · · , Nc, where

Nc is the number of configurations being sampled. We use the rotational minimized root

mean square distance (RMSD) between ri and rj as the pairwise distance, Kabsch algorithm

is applied to carry out the calculation of dij.14

The second step involves creating the hopping probability matrix, A, by incorporating a

Gaussian kernel into the distance matrix: Aij = exp
(
−d2ij/2ε

)
, where ε is the bandwidth.1–4

This operation ensures that if two configurations ri, rj have a large distance between them

(dij → ∞), their hopping probability becomes 0 (Aij → 0), while adjacent pairs have

substantial hopping probabilities (dij → 0⇒ Aij → 1).

The third step is to obtain the Markov matrix, M, defined as M = D−1A, where D is

the normalization matrix—a diagonal matrix with elements Dii =
∑NC

k=1Aik.

The last step involves performing an eigen decomposition of the Markov matrix M.

This process yields a series of eigenvalues in descending order: [λ1, λ2, . . . , λNC
] ∈ (0, 1]

where 1 = λ1 ≥ λ2 ≥ . . . ≥ λNC
> 0. Associated with these eigenvalues are eigenvectors:

[ξ1, ξ2, . . . , ξNC
]. Note that the Markov matrix M is a NC ×NC matrix, and eigenvector ~φi

has NCc components. Eigenvectors corresponding to large eigenvalues represent the slowest

diffusion modes, capturing the most important intrinsic dimensions. It’s worth noting that

among all eigenvalues, λ1 = 1, and the corresponding eigenvector ξ1 is an all-one vector,

signifying the steady state, which can be disregarded.

For dimensionality reduction, each high-dimensional state point is projected into the

low-dimensional space spanned by the top k eigenvectors. For instance, the i-th config-

uration from the simulation will have a k − 1 dimensional coordinate: configurationi →

[ξ2(i), ξ3(i), . . . , ξk(i)], where ξk(i) denotes the i-th component of the k-th eigenvector ξk.

The value of k can be determined based on the location of the gap in the eigenvalue spectrum.

S4



Figure S2: Eigenvalue spectrum of the dMaps, and the inset shows the relation between ξ2
and the radius of gyration Rg.

In Fig. S2, the eigenvalue spectrum resulting from dMaps analysis is presented. A dis-

cernible gap is observed between the second and third eigenvalues, highlighted by the hor-

izontal dashed line. This gap signifies that the effective dimensionality of the molecule’s

configuration is one, and the low-dimensional collective variable can be adequately repre-

sented using ξ2, as indicated by the black arrow. The inset illustrates the relationship

between ξ2 and the radius of gyration Rg, showcasing a negative correlation with a Pearson

correlation coefficient of -0.84. This fairly strong correlation suggests that Rg can effectively

capture the overall molecular configuration, and span the configurational dependent bond

breaking rate, so r could be replaced by Rg in all equations: r→ Rg.

Comparison with DFT Results

Besides the simulation with the oxygen moleucles at present, we also conduct pyrolysis

simulation of three molecules in the gas-phase, where there is no oxygen molecules, the
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obtained results are shown in Figure S3, Figure S4, and Figure S5.

Figure S3: Results of the pyrolysis simulation of n-pentane. (a) The lifetime distribution
of the modified data. The vertical dashed line marks the average lifetime t̄ = 3.596 ps,
the red curve represents the exponential distribution with the corresponding rate constant
λ = 1/t̄ = 0.278 ps−1. (b) Overall probabilities and corresponding rate constants for single
bond 1 and single bond 2. (c) The equilibrium distribution of the Rg, ρe(Rg); and the
distribution of the Rg under the condition that the molecule just breaks, ρb(Rg). (d) Bond
dissociation rate for the entire molecule (λ(Rg), black curve); for bond 1 (λ(Rg, 1), blue
curve); for bond 2 (λ(Rg, 2), red curve).

In the compared DFT paper,15 parameters A, n,Ea in the modifyed Arrhenius equation

(k = AT n exp(−Ea/RT )) are fitted and reported, as indicated in the Figure S6, which is

copied from the referenced paper.15 Note that parameters for only bond 1 and 2, which

producing CH3 and C2H5 radicles are reported, as the dissociation rate constant for other

C-C bonds are similar to bond 2, which produce C2H5. Using these parameters, the bond

dissociation rate constant at our simulation temperature (3500K) could be predicted. Table

1 shows all rate constants predicted from the paper and from our approach.

Compare the results and conclusions from the paper with our results, we can conclude
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Figure S4: Results of the pyrolysis simulation of n-pentane. (a) The lifetime distribution
of the modified data. The vertical dashed line marks the average lifetime t̄ = 0.934 ps,
the red curve represents the exponential distribution with the corresponding rate constant
λ = 1/t̄ = 1.071 ps−1. (b) Overall probabilities and corresponding rate constants for each
single bond. (c) The equilibrium distribution of the Rg, ρe(Rg); and the distribution of the
Rg under the condition that the molecule just breaks, ρb(Rg). (d) Bond dissociation rate for
the entire molecule (λ(Rg), black curve); for unified bond I (λ(Rg, 1), red curve); for unified
bond II (λ(Rg, 1), blue curve); for unified bond III (λ(Rg, 1), green curve).

Table S1: Bond dissociation rate constants predicted from Ref15 and from our calculation
for n-pentane and n-tridecane. Dissociation of two bonds are included: bond 1: R−CH3 →
R + CH3, and bond 2: R − C2H5 → R + C2H5. Where R − CH3 and R − C2H5 = C5H12

or C13H28. The unit of the rate constant are s−1.

n-pentane n-pentane n-tridecane n-tridecane
bond 1 bond 2 bond 1 bond 2
R− CH3 R− C2H5 R− CH3 R− C2H5

Ref 8.87e+10 4.04e+11 2.96e+10 1.63e+11
Our 1.09e+11 1.62e+11 9.33e+10 1.51e+11

that, based on the following four aspects, ReaxFF simulation (combined with our calculating

method) could qualitatively capture bond breaking properties:

1. DFT shows that all C-C bonds at different positions in one alkane chain have similar

S7



Figure S5: Results of the pyrolysis simulation of 1,3-Propanediol. (b) Overall probabilities
and corresponding rate constants for single bond 1 and single bond 2. (b) Bond dissociation
rate for the entire molecule (λ(Rg), black curve); for bond 1 (λ(Rg, 1), blue curve); for bond
2 (λ(Rg, 2), red curve).

dissociation rate constants, the difference is less than 1 order of magnitude, and this is

consistent with our result.

2. Comparing our rate constant values with the values predicted from the referenced

paper in Table 1, although they are not closely similar, they exhibit a comparable order of

magnitude. This suggests that ReaxFF qualitatively captures the dissociation kinetics.

Two following trends are also consistent:

3.Even though bond dissociation rate constant are similar to each other within the same

alkane chain, the dissociation of the bond 1 (R−CH3 → R+CH3) is harder than bonds at

other locations, this is consistent with our results, with bond 1 has significantly smaller rate

constant than bond 2.

4. For the bond at the same position, as the alkane size increase, its dissociation rate

constant decreases.

All the above consistencies indicate that ReaxFF incorporated with our method could

qualitatively estimate bond dissociation rate constant, and capture alkane cracking proper-

ties.

In fact, our approach can be seen as a ‘data-driven’ method for estimating rate constants,

which differs from existing approaches such as VTST. In VTST theory, one must identify all

potential reactions, locate the transition states, and compute rate constants for each pathway
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Figure S6: Fitted values for the modified Arrhenius equation for varies alkane chain sizes.
This table is copied from Ref.15

before combining them to determine the final reaction or dissociation rate. This requires a

clear depiction of each reaction.

In our ‘data-driven’ approach, we bypass the need for detailed reaction knowledge. In-

stead, we simulate all potential reactions using reactive MD or QM/MD. With a sufficiently

large number of trajectories, all possible reaction paths are sampled. From these statistical

results, we derive reaction rate constants in a ‘top-down’ fashion, contrasting with the tradi-

tional ‘bottom-up’ approach. The accuracy of capturing all potential reactions in simulations

becomes crucial. To achieve this, methods such as Car–Parrinello molecular dynamics and

QM/MM techniques integrate equation of motions into QM, ensuring accurate representation

of reactions derived from QM.

In this research paper, we utilize ReaxFF simulation rather than QM for its speed and

effectiveness as a prototype to validate our method. Our results demonstrate that ReaxFF

yields qualitatively accurate outcomes. In future research, we intend to integrate our method

with more precise QM/MD simulation data.
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C-H Bond Breaking Rate Constant

Figure S7: (a) Indices for each bond, symmetrical bonds are assigned the same index. There
are five types of bonds in total: Bonds 1 and 2 are C-C bonds; Bond 3 is the C-H bond
on the edge carbon atom; Bonds 4 and 5 are C-H bonds on the central carbon atoms. (b)
Single bond breaking probabilities and breaking rate in the pyrolysis simulation (with no
oxygen molecule). (c) Rate constants for each bond as a function of the radius of gyration.
(d) Single bond breaking probabilities and breaking rate in the oxidation simulation (with
oxygen at present). (e) Rate constants for each bond as a function of the radius of gyration
in an oxygenated environment.

To compare how C-H bonds break relative to C-C bonds in n-pentane, we conducted

additional simulations in pyrolysis and oxidation, considering C-H bond breakage. There are

five bond types, accounting for symmetry: two C-C bonds and three C-H bonds, as shown

in Figure S7a. Figure S7b demonstrates that C-H bonds have significantly lower overall

dissociation rate constants than C-C bonds, with terminal H atoms having the smallest
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breaking rates. Figure S7c illustrates the relationship between breaking rate constants and

molecular configurations, showing that C-C bonds break more readily when the molecule

is stretched, while C-H bonds remain consistently flat and low. Figures S7d and S7e show

simulations with oxygen present; the trends are similar, but the breaking rates are lower in

the oxygen environment.
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SUPPLEMENTARY FIGURES

(b) (c)(a)
1
2

1
2

Figure S8: (a) Lifetime distribution for all simulation data for n-pentane, the inset shows
the fitting error of the data with exponential distribution as a function of the offset cut, the
best offset cut is determined to be 13.600 ps. (b) Counting number density for bond 1 and 2
as a function of Rg, ρi(Rg), where i = 1,2. (c) Probabilities among bond 1 and 2 at different
Rg, Pi(Rg), and i = 1,2.
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Figure S9: (a) Lifetime distribution for all simulation data for 1,3-Propanediol, the inset
shows the fitting error of the data with exponential distribution as a function of the offset
cut, the best offset cut is determined to be 9.600 ps. (b) Counting number density for bond
1 and 2 as a function of Rg, ρi(Rg), where i = 1,2. (c) Probabilities among bond 1 and 2 at
different Rg, Pi(Rg), and i = 1,2.
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SUPPLEMENTARY VIDEOS

movieS1.mp4 shows one typical ReaxFF simulation trajectory of the n-tridecane, and the

dissociation of the n-tridecane occurs approximately at 5.00 ps.

movieS2.mp4 shows one typical ReaxFF simulation trajectory of the n-pentane, and the

dissociation of the n-pentane occurs approximately at 7.00 ps.

movieS3.mp4 shows one typical ReaxFF simulation trajectory of the 1,3-Propanediol,

and the dissociation of the 1,3-Propanediol occurs approximately at 9.00 ps.
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