Synthesis, Crystal Structure Analysis, Computational Modelling and Evaluation of Anti-Cervical Cancer Activity of Novel 1,5-Dicyclooctyl Thiocarbohydrazone

Soni Shukla^a, Prince Trivedi^a, Delna Johnson^b, Pulkit Sharma^a, Abhinav Jha^a, Habiba Khan^c, Vijay Thiruvenkatam^b, Monisha Banerjee^c, Abha Bishnoi^{a*}

^aDepartment of Chemistry, University of Lucknow, Lucknow - 226007, Uttar Pradesh, India ^bDepartment of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Palaj -382355, Gandhinagar, India

^cDepartment of Zoology, University of Lucknow, Lucknow- 226007, Uttar Pradesh, India Corresponding Author: Prof. Abha Bishnoi, <u>Email: abhabishnoi5@gmail.com</u>, Mobile: 9415028822.

Supplementary Fig. S1 FT-IR spectrum of compound 3.

Supplementary Fig. S2 ¹H-NMR spectrum of compound 3.

Supplementary Fig. S3 ¹³C-NMR spectrum of compound 3.

Supplementary Fig. S4 Plausible reaction mechanism of synthesized compound 3.

Supplementary Fig. S5 Colour coding of neighbouring molecules with respect to the central molecule (black colour).

Supplementary Fig. S6 Optimized structure of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S7 Theoretical FT- IR spectrum of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S8 ¹H and ¹³C NMR correlation diagram of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S9 The correlation diagram of UV- Vis spectra of compound **3** using DFT/B3LYP/B3WP91/PBE-PBE/6-311++G (d, p) level of theory.

Supplementary Fig. S10 The MEP diagram of compound **3** using DFT/B3LYP /6-311++G (d, p) level of theory.

Supplementary Fig. S11 The Histograms of compound **3** with protein tyrosine-protein phosphatase 4XR8(A) and 7VZE (B) found number of distinct conformational clusters 12 and 10 with binding energies out of 50 runs using a RMSD-tolerance of 2.0 Å.

Supplementary Fig. S1 FT-IR spectrum of compound 3.

Supplementary Fig. S2 ¹H-NMR spectrum of compound 3.

Supplementary Fig. S3 ¹³C-NMR spectrum of compound 3.

UV λ_{max} (Methanol): 285 nm, FT-IR using KBr pellets (cm⁻¹): 3302 and 3215 (-NH stretching), 2926 and 2849 (-CH₂ stretching), 1506 (N-H bending), 1460 (C-N stretching), 1219 (-C=S stretching) & 1113 (C-N bending), ¹H-NMR (DMSO-*d*₆, 300 MHz) δ (ppm): 1.041-1.705 (m for 20H on C_c-C_e), 2.357 (s for 4H on C_b) & 10.457 [s for 2H on N-H (denoted by g)]. ¹³C-NMR (DMSO-*d*₆, 75 MHz) δ (ppm): 24.13, 25.44, 27.37, 28.30, 36.52, 162.09 & 174.76.

Supplementary Fig. S4 Plausible reaction mechanism of synthesized compound 3.

Supplementary Fig. S5 A collection of molecules surrounds the central molecule (black colour).

Supplementary Fig. S6 Optimized structure of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S7 Theoretical FT- IR spectrum of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S8 ¹H and ¹³C NMR correlation diagram of compound **3** using DFT/B3LYP/6-311++G (d, p) level of theory.

Supplementary Fig. S9 The correlation diagram of UV- Vis spectra of compound **3** using DFT/B3LYP/B3WP91/PBE-PBE/6-311++G (d, p) level of theory.

Supplementary Fig. S10 The MEP diagram of compound **3** using DFT/B3LYP /6-311++G (d, p) level of theory

Supplementary Fig. S11 The Histograms of compound **3** with protein tyrosine-protein phosphatase 4XR8(A) and 7VZE (B) found number of distinct conformational clusters 12 and 10 with binding energies out of 50 runs using a RMSD-tolerance of 2.0 Å.