Supporting Information

First-principles study of electronic structure and point defects in higher manganese silicide Mn₄Si₇

Jun Chai,^{a,†*} Guangshu Li,^{b†} Mingping He^a, and Hangjia Shen^a

^aCollege of Chemical and Material Engineering, Quzhou University, Quzhou 324000, Zhejiang, China

^bKey Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China

*Corresponding authors. E-mail address: chaijun@qzc.edu.cn (Jun Chai).

[†]These authors contributed equally to this work.

Fig. S1 The effective masses of hole and electron carriers at VBM (a, b, c) and CBM (d, e, f) for Mn_4Si_7 were evaluated along different directions. The black points near VBM and CBM are fitted using a quadratic term y = 1

 $A+Bx+Cx^2$. The red line represents the fitting result, where the effective mass is given by $\frac{1}{2C}m_e$

Fig. S2 (a) The calculated stable region of Mn_4Si_7 in the chemical potential space spanned by μ_{Mn} and μ_{Si} . Each straight line corresponds to $x \mu_{Mn} + y \mu_{Si} = \Delta H(Mn_xSi_y)$. The allowed region is delineated by a bold blue line. The inset, magnifying the area within the red circle, illustrates the constituted compounds of HMS, namely Mn_4Si_7 , $Mn_{11}Si_{19}$, $Mn_{15}Si_{26}$ and $Mn_{27}Si_{47}$. (b) The formation energies of the intrinsic point defects in Mn_4Si_7 as a function of chemical potentials between the Si-rich and Mn-rich conditions. These results are obtained using the PBEsol functional.

Fig. S3 Two-dimensional Electron Localization Function (ELF) contour plots on (110) plane of Mn_4Si_7 in Fig. 1. Mn and Si atoms are represented by purple and blue spheres. The contour lines are spaced at intervals of 0.08. The closer the ELF is to zero, the more ionic the bonding features.

S4

Fig. S4 Determination of the allowed region for chemical potentials. Each straight line corresponds to $x \mu_{Mn} + y \mu_{Si} = \Delta H(Mn_xSi_y)$, $x \mu_D + y \mu_{Si} = \Delta H(D_xSi_y)$, and $x \mu_{Mn} + y \mu_D = \Delta H(Mn_xD_y)$. Mn_xSi_y , D_xSi_y , and Mn_xD_y represent the Mn-Si binary compounds, *D*-Si binary compounds, and Mn-*D* binary compounds, respectively. ΔH is the calculated enthalpy of formation. The thick solid red lines mark the allowed chemical potential regions and the blue dots indicate the condition used for obtaining Fig. 5, at which the corresponding formation energy is the lowest. It is worth noting that the straight lines for binary compounds with $\Delta H > 0$ will not be displayed.

Defect type	Total magnetization (μ_B)
$V_{\rm Mn}({\rm Mn}_{63}{ m Si}_{112})$	0.99
$V_{\rm Si} ({\rm Mn}_{64}{ m Si}_{111})$	3.71
$Mn_i (Mn_{65}Si_{112})$	3.03
$Si_i (Mn_{64}Si_{113})$	4.00
$Mn_{Si} (Mn_{65}Si_{111})$	3.01
$\mathrm{Si}_{\mathrm{Mn}}\left(\mathrm{Mn}_{63}\mathrm{Si}_{113}\right)$	0.59

Table S1 Total magnetization for Mn₄Si₇ containing intrinsic defects.

Atom	<i>x</i>	у	Z	Charge state
Mn1	0.000000	0.000000	0.250000	0.12
Mn2	0.000000	0.000000	0.750000	-0.01
Mn3	0.000000	0.000000	0.000000	-0.21
Mn4	0.000000	0.000000	0.500000	-0.21
Mn5	0.500000	0.500000	0.130090	-0.19
Mn6	0.500000	0.500000	0.869910	-0.21
Mn7	0.500000	0.500000	0.630090	-0.21
Mn8	0.500000	0.500000	0.369910	-0.19
Mn9	0.000000	0.500000	0.065081	-0.11
Mn10	0.500000	0.000000	0.934919	-0.10
Mn11	0.000000	0.500000	0.565081	-0.10
Mn12	0.500000	0.000000	0.434919	-0.11
Mn13	0.000000	0.500000	0.308212	-0.05
Mn14	0.500000	0.000000	0.691788	-0.10
Mn15	0.000000	0.500000	0.808212	-0.10
Mn16	0.500000	0.000000	0.191788	-0.05
Sil	0.345942	0.769431	0.038804	0.07
Si2	0.654058	0.230569	0.038804	0.14
Si3	0.769431	0.654058	0.961196	0.09
Si4	0.230569	0.345942	0.961196	0.10
Si5	0.345942	0.230569	0.538804	0.05
Si6	0.654058	0.769431	0.538804	0.14
Si7	0.769431	0.345942	0.461196	0.11
Si8	0.230569	0.654058	0.461196	0.11
Si9	0.199407	0.155412	0.112824	-0.03
Si10	0.800592	0.844588	0.112824	0.04
Si11	0.155412	0.800592	0.887176	0.05
Si12	0.844588	0.199407	0.887176	0.03

Table S2 The charge state of Mn and Si for Mn_4Si_7 obtained by using Bader charge analysis. The lattice constants are a = b = 5.498 Å and c = 17.35 Å.

Si13	0.199407	0.844588	0.612824	0.02
Sil4	0.800592	0.155412	0.612824	0.05
Si15	0.155412	0.199407	0.387176	0.02
Si16	0.844588	0.800592	0.387176	-0.01
Sil7	0.158878	0.678921	0.182512	0.05
Si18	0.841122	0.321079	0.182512	-0.03
Si19	0.678921	0.841122	0.817488	-0.01
Si20	0.321079	0.158878	0.817488	0.08
Si21	0.158878	0.321079	0.682512	0.07
Si22	0.841122	0.678921	0.682512	0.00
Si23	0.678921	0.158878	0.317488	0.04
Si24	0.321079	0.841122	0.317488	-0.03
Si25	0.333920	0.333920	0.250000	0.08
Si26	0.666080	0.666080	0.250000	0.25
Si27	0.333920	0.666080	0.750000	0.10
Si28	0.666080	0.333920	0.750000	0.23

Table S3 Binary compounds of Mn-Si-*D* systems which are used in determining the chemical potentials for calculating defect formation energy. All structures are obtained from ICSD.

Mn-Si	Mn ₁₁ Si ₁₉ (P4 ₁ cd #110), Mn ₁₅ Si ₂₆ (I-4 ₂ d #122), Mn ₂₇ Si ₄₇ (P4 ₁ cd #110), Mn ₃ Si (Fm-3m #225), Mn ₄ Si ₇ (P-4c2 #116), Mn ₅ Si ₂ (P4 ₁ 2 ₁ 2 #92), Mn ₅ Si ₃ (P2 ₁ /m #11, Cmcm #63, P6 ₃ /mcm #193), Mn ₆ Si ₇ (R-3m #166), MnSi (P2 ₁ 3 #198)
V-Si Mn-V	V ₃ Si (Pm-3n #223), V ₅ Si ₃ (P6 ₃ /mcm #193, I4/mcm #140), V ₆ Si ₅ (Immm #71, Ibam #72), VSi ₂ (P6 ₂ 22 #180)
Nb-Si Mn-Nb	Nb ₃ Si ₂ (P4/mbm #127), Nb ₃ Si (Pm-3n #223, Pm-3m #221, P4 ₂ /n #86), Nb ₅ Si ₃ (I4/mcm #140, P6 ₃ /mcm #193), NbSi ₂ (P6 ₂ 22 #180)
Ta-Si Mn-Ta	Ta ₂ Si (I4/mcm #140), Ta ₃ Si (P4 ₂ /n #86), Ta ₅ Si ₃ (P6 ₃ /mcm #193, I4/mcm #140), TaSi ₂ (P6 ₂ 22 #180)
Cr-Si Mn-Cr	Cr ₃ Si (Pm-3n #223), Cr ₃ Si ₅ (I4/mcm #140), Cr ₅ Si ₃ (I4/mcm #140), CrSi (P2 ₁ 3 #198), CrSi ₂ (P6 ₂ 22 #180, I4/mmm#139)
Mo-Si Mn-Mo	Mo ₃ Si (Pm-3n #223), Mo ₃ Si ₂ (P4/mbm #127), Mo ₅ Si ₃ (I4/mcm #140, P63/mcm #193), MoSi ₂ (P6 ₂ 22 #180, I4/mmm#139)
W-Si Mn-W	W ₃ Si (Pm-3n #223) W ₃ Si ₂ (P4/mbm #127), W ₅ Si ₃ (I4/mcm #140), WSi ₂ (P6 ₂ 22 #180, I4/mmm#139)
Re-Si Mn-Re	Re ₂ Si (P2 ₁ /c #14), Re ₄ Si ₇ (Cm #8), Re ₅ Si ₃ (I4/mcm #140), ReSi (P2 ₁ 3 #198), ReSi ₂ (I4/mmm #139, Immm #71)
B-Si Mn-B	B ₁₂ Si ₃ (R-3m #166), B ₃ Si (Imma #74), B ₆ Si (Pm-3m #221) MnB (Pnma #62, P4 ₂ /ncm, #138), Mn ₂ B (I4/mcm #140), MnB ₂ (P6/mmm #191), MnB ₄ (Pnnm #58, C2/m #12, P21/c #14), Mn ₃ B ₄ (Immm #71)

Al-Si	Al ₈ Si ₃₈ (P1 #1)
Mn-Al	MnAl (P4/mmm #123), Mn ₃ Al (F-43m #216), Mn ₃ Al ₁₀ (P6 ₃ /mmc #194), Mn ₄ Al ₁₁ (P-1 #2), MnAl ₁₂ (Im-3 #204), Mn ₁₂ Al ₅₇ (Pm-3 #200), MnAl ₆ (Cmcm #63), Mn ₅ Al ₈ (R3m #160)
Ga-Si Mn-Ga	MnGa (P4/mmm #123, R-3m #166), Mn ₃ Ga (Fm-3m #225, P6 ₃ /mmc #194), Mn ₆ Ga ₂₉ (P-1 #2), MnGa ₄ (Im-3m #229), Mn ₂ Ga ₅ (P4/mbm #127), Mn ₈ Ga ₅ (I-43m #127), MnGa ₆ (Cmcm #63)
In-Si Mn-In	None
C-Si	SiC (F-43m #216, Fm-3m #225, P3m1 #156, P6 ₃ /mc #186, R3m #160), SiC ₂ (P4 ₂ /mmc #131, Pa-3 #205)
Mn-C	Mn ₃ C (Pnma #62), Mn ₆ C (Fd-3m #227), Mn ₁₁ C ₃ (F23 #196), Mn ₅ C ₂ (C2/c #15), Mn ₇ C ₃ (Pnma #62), Mn ₂₃ C ₆ (Fm-3m #225)
Ge-Si	MnGe (P2 ₁ 2 ₁ 2 ₁ #19, P2 ₁ 3 #198), Mn ₂ Ge(F-43m #216, P6 ₃ /mmc #194), Mn ₃ Ge (Pm-3m #221, Fm-3m #225, P6 ₂ /mmc #194), Mn ₅ Ge ₂ (Ibam #72, P3c1 #158), Mn ₅ Ge ₂ (P6 ₂ /mcm #193).
Mn-Ge	$Mn_{12}Ge_5 (R32 \# 155), Mn_{11}Ge_8 (Pnma \# 62), Mn_{23}Ge_9 (P3c1 \# 158)$
Sn-Si	MnSn (Pm-3m #221, Fm-3m #225, P6 ₃ /mmc #194, F-43m #216), MnSn ₂ (I4/mcm #140), Mn ₂ Sn
Mn-Sn	(P6 ₃ /mmc #194), Mn ₃ Sn (P6 ₃ /mmc #194, Fm-3m #225), Mn ₃ Sn ₂ (Pnma #62)

Dopant type	Total magnetization (µ _B)
None (Mn ₁₆ Si ₂₈)	0
$V (Mn_{15}VSi_{28})$	1.73
Nb (Mn ₁₅ NbSi ₂₈)	0.00
$Ta \left(Mn_{15}TaSi_{28} \right)$	0.00
$Cr (Mn_{15}CrSi_{28})$	0.97
Mo (Mn ₁₅ MoSi ₂₈)	0.98
W (Mn ₁₅ WSi ₂₈)	0.93
$Re (Mn_{15}ReSi_{28})$	0.00
$B (Mn_{16}Si_{27}B)$	0.91
Al ($Mn_{16}Si_{27}Al$)	0.72
$Ga (Mn_{16}Si_{27}Ga)$	0.66
$In (Mn_{16}Si_{27}In)$	0.91
C (Mn ₁₆ Si ₂₇ C)	0.00
Ge ($Mn_{16}Si_{27}Ge$)	0.00
Sn (Mn ₁₆ Si ₂₇ Sn)	0.00

Table S4 Total magnetization for Mn_4Si_7 containing extrinsic defects.

Dopant type	ELF value
None (Mn ₁₆ Si ₂₈)	0.834
V (Mn ₁₅ VSi ₂₈)	0.664
Nb (Mn ₁₅ NbSi ₂₈)	0.668
$Ta (Mn_{15}TaSi_{28})$	0.668
$Cr (Mn_{15}CrSi_{28})$	0.670
Mo (Mn ₁₅ MoSi ₂₈)	0.657
W (Mn ₁₅ WSi ₂₈)	0.679
Re $(Mn_{15}ReSi_{28})$	0.673
$B\left(Mn_{16}Si_{27}B\right)$	0.670
Al ($Mn_{16}Si_{27}Al$)	0.668
Ga (Mn ₁₆ Si ₂₇ Ga)	0.670
$In (Mn_{16}Si_{27}In)$	0.665
$C (Mn_{16}Si_{27}C)$	0.679
Ge ($Mn_{16}Si_{27}Ge$)	0.678
$Sn (Mn_{16}Si_{27}Sn)$	0.670

Table S5 The maximum ELF value for Mn_4Si_7 containing extrinsic defects.