Supporting Information

for

Si@SbN: A promising solar photocatalyst for the reduction of NO

Lei Yang, Jiake Fan, Weihua Zhu*

Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical

Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^{*} Corresponding authors. E-mail: <u>zhuwh@njust.edu.cn</u> (Weihua Zhu).

Figure S1. (a) Partial density of states (PDOS) of Si@SbN, including the N-*s*, Si-*s*, N-*p* and Si-*p* orbitals. (b) Phonon dispersion curve of geometrically optimized Si@SbN.

Figure S2. Variations of temperature, energy, and Si-N bond length fluctuations versus the AIMD simulation time for Si@SbN. The simulation is run under 500 K for 10 ps with a time step of 1 fs.

Figure S3. Optimized atomic configuration of *N and *NH.

Figure S4. Optimized geometric of various intermediates along the different reaction pathways of

NORR preceded on Si@SbN.

Figure S5. Energy barriers of each NORR step.

Figure S6. Band structures of (a) SbN and (b) Si@SbN.

Figure S7. Optimized structure of *H adsorbed on Si@SbN and the corresponding free energy

diagram of HER.

Supercell size	$2 \times 2 \times 1$	$3 \times 3 \times 1$	$4 \times 4 \times 1$
$E_{\rm ads}(*{ m NO})~({ m eV})$	-1.89	-1.80	-1.78
Doping concentration	25.00%	11.11%	6.25%

 Table S1. Test of supercell size and doping concentration.

$E_{\rm catalyst}$	$E_{\rm pure}$	E_{Si}	E_{Sb}	$E_{ m f}$
-99817.82	-95774.67	-7874.95	-3833.42	-1.62

Table S2. Formation energy $(E_{\rm f}, eV)$ of Si@SbN.

*Formation energy ($E_{\rm f}$), $E_{\rm f} = E_{\rm catalyst} - E_{\rm pure} - E_{\rm Si} + E_{\rm Sb}$ where $E_{\rm catalyst}$, $E_{\rm pure}$, $E_{\rm Si}$ and $E_{\rm Sb}$ represent the DFT energy of Si@SbN catalyst, the DFT energy of pure SbN, the DFT energy of a Si atom in corresponding bulk, and the DFT energy of a Sb atom in corresponding bulk, respectively.