Improving the performance of kesterite solar cells by solution

germanium alloying

Sitong Xiang, Yize Li, Chunxu Xiang, Hongkun Liu, Yuanyuan Zheng, Shaoying Wang*, Weibo Yan* and Hao Xin*

Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Correspondence: <u>iamhxin@njupt.edu.cn</u>

Table S1. Elemental analysis of compounds.

Sample	C [wt.%]	H [wt.%]	S [wt.%]
compound	12.34	3.405	15.272
Ge(DMSO) ₂ Cl ₄	12.97	3.24	17.297

Table S2. The diffraction angle, FWHM of (112) diffraction peak, and crystalline domain size of samples.

Sample	2-theta (°)	FWHM (°)	Grain Size (nm)
CZTSSe	27.498	0.183	53.6
CZTGSSe-10	27.522	0.219	42.1
CZTGSSe-15	27.579	0.226	40.4
CZTGSSe-20	27.614	0.228	40.0
CZTGSSe-40	27.709	0.255	35.0
CZGSSe	27.947	0.136	88.1

Table S3. Lattice parameters and cell volume of the absorbers.

Sample	a (Å)	c (Å)	vol (Å ³)
CZTS	5.632	11.156	353.835
CZTGSSe-10	5.626	11.150	352.926
CZTGSSe-15	5.615	11.124	350.786
CZTGSSe-20	5.613	11.094	349.491
CZTGSSe-40	5.589	11.076	345.965
CZGSSe	5.544	10.975	337.377

Figure S1. Statistical device parameters of kesterite solar cells with a whole concentration.

Sample	V _{OC}	$J_{ m SC}$	FF	PCE	R _s	Eg	$V_{\rm OC}/V_{\rm OC}{}^{\rm SQ}$
	(mV)	(mA/cm^2)	(%)	(%)	$(\Omega \ cm^2)$	(eV)	
CZTS	477.4	35.36	64.99	10.97	2.041	1.081	0.568
CZTGSSe-10	508.8	34.71	62.34	11.01	2.381	1.094	0.597
CZTGSSe-15	519.3	33.05	65.64	11.27	2.248	1.128	0.587
CZTGSSe-20	519.1	33.05	60.72	10.42	2.793	1.132	0.584
CZTGSSe-40	496.7	32.81	58.94	9.61	3.130	1.142	0.553
CZGSSe	577.4	15.48	49.4	4.41	15.510	1.517	0.463

Table S4 Device characteristics of CZTSSe, CZTGSSe-n and CZGSSe solar cells.

Table S5. Average device characteristics of CZTSSe, CZTGSSe-n and CZGSSe solar cells.

Sample	$V_{\rm OC}({ m mV})$	$J_{ m SC}~({ m mA/cm^2})$	FF (%)	PCE (%)
CZTS	477.6 ± 3.6	35.21 ± 0.5	62.63 ± 1.3	10.42 ± 0.3
CZTGSSe-10	502.5 ± 4.0	33.71 ± 0.9	62.42 ± 1.5	10.58 ± 0.3
CZTGSSe-15	521.0 ± 4.2	32.00 ± 0.9	65.82 ± 0.8	11.15 ± 0.4
CZTGSSe-20	515.3 ± 3.2	31.50 ± 1.1	61.51 ± 1.2	10.29 ± 0.4
CZTGSSe-40	492.8 ± 2.9	31.34 ± 0.8	57.70 ± 1.1	8.74 ± 0.4
CZGSSe	555.7 ± 16.9	13.39 ± 1.3	45.83 ± 2.8	3.20 ± 0.6

Figure S2. The bandgap of CdS obtained by differentiation based on EQE data.

The bandgap of CdS is estimated by plotting dEQE/d λ versus energy, three peaks represent the absorber, cadmium sulfide (CdS) buffer layer, and window layer respectively, with a bandgap of 2.33eV in the buffer layer.

Table S6. Device characteristics of CZTGSSe-15 and ACZTGSSe-15 solar cells.										
Cell	$V_{\rm OC}$	$J_{ m SC}$	FF	PCE	R _s	n	\mathbf{J}_0	E_{U}	Eg	$V_{OC}\!/V_{OC}{}^{SQ}$
_	(mV)	(mA cm ⁻²)	(%)	(%)	$(\Omega \ cm^2)$		(A cm ⁻²)	(meV)	(eV)	
CZTGSSe-15	522.3	33.24	65.16	11.31	2.253	1.81	4.15×10 ⁻⁷	24.7	1.129	0.589
ACZTGSSe-15	523.8	35.87	65.22	12.25	2.139	1.56	7.40×10 ⁻⁸	23.8	1.131	0.590