Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.

Supplementary Information (SI) for Prediction of ultraviolet optical materials in the K₂O-B₂O₃ system

Xiaoqing Guo, [‡] Yanting Wang, [‡] Haiyang Niu*

State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China

[‡] These authors contributed equally to the work

*Corresponding Author: haiyang.niu@nwpu.edu.cn

Supplementary Discussion

Impact of temperature and pressure on phase stability.

As demonstrated by many precious studies, temperature has been found to play an important role in stabilizing structures that are metastable at 0 K. For instance, oP112-1-KB₅O₈ is stable at 0 K ^[1], while oP112-2-KB₅O₈ is a metastable phase at 0 K. Previous experimental research has shown that oP112-2-KB₅O₈ can be synthesized at 760 °C, indicating its stability as a high-temperature phase ^[1]. Thus, for the newly predicted structures, particularly those that are metastable, synthesizing at elevated temperature presents a promising approach to realizing them in practice.

To clarify the impact of pressure on the stability of these structures, we have further calculated the thermodynamic convex hull at 3 GPa (Fig. S1). The metastable structures observed at 0 GPa, namely $mP28-2-K_3BO_3$, $mC72-KB_3O_5$, $oP112-2-KB_5O_8$, become thermodynamically stable at 3 GPa, suggesting that pressure enhances the stability of these structures. Notably, $mC72-KB_3O_5$ has been successfully synthesized at 3 GPa and 600 °C in experiments and is recognized as a high-pressure phase in the literature ^[2-3], underscoring the reliability of our results. Therefore, considering the effects of temperature and pressure on phase stability, it is plausible that metastable phases in the K₂O-B₂O₃ system could be synthesized experimentally.

Nonlinear optical response.

The general expression for the nonlinear optical susceptibility depends on the frequency of $E(\omega)$. The second-order susceptibility tensor $\chi_{ijk}^{(2)}$ (-2 ω ; ω , ω) is commonly represented as $\chi_{ijk}^{(2)}(\omega)$. Since that *hR*21-K₃BO₃ belongs to the 3m point group, the non-zero components of the susceptibility tensor are: $\chi_{112}^{(2)}(\omega)$, $\chi_{131}^{(2)}(\omega)$, $\chi_{221}^{(2)}(\omega)$, $\chi_{222}^{(2)}(\omega)$, $\chi_{311}^{(2)}(\omega)$, $\chi_{322}^{(2)}(\omega)$, and $\chi_{333}^{(2)}(\omega)$ (1, 2, and 3 refer to the *x*, *y* and *z* axes, respectively). Figs. S5a and S5b illustrate the real and imaginary parts of these eight second-order susceptibility components ^[4-5]. The trends of $\chi_{113}^{(2)}(\omega)$, $\chi_{311}^{(2)}(\omega)$, $\chi_{322}^{(2)}(\omega)$, and $\chi_{223}^{(2)}(\omega)$ are nearly coincident, while $\chi_{112}^{(2)}(\omega)$ and $\chi_{211}^{(2)}(\omega)$

exhibit identical trends. Therefore, we have analyzed the intraband and interband contributions to $\chi_{222}^{(2)}(\omega)$, $\chi_{333}^{(2)}(\omega)$, $\chi_{223}^{(2)}(\omega)$ and $\chi_{112}^{(2)}(\omega)$ (Figs. S5c-f). Among these, $\chi_{222}^{(2)}(\omega)$ and $\chi_{112}^{(2)}(\omega)$ have equal magnitudes but opposite signs, and they are the principal components of SHG.

Within the energy range of 0 to 2.3 eV, the real part changes slowly, and the imaginary part is zero, indicating that $\chi_{ijk}^{(2)}(\omega)$ is purely dispersive. Importantly, the 2 ω terms dominate in the low energy regions, while high energy states exhibit mixed ω and 2 ω terms. This distinction between ω and 2 ω patterns highlights the relatively strong birefringence nature of *hR*21-K₃BO₃.

In addition, comparing the total contribution with the intraband and interband contributions, we find that the overall value of the second harmonic generation is very small due to the cancellation of intraband and interband components, which have values of opposite signs. Therefore, 2ω terms start contributing at an energy of Eg/2, while the ω terms begin contributing at energy above Eg. Consequently, any anisotropy in the linear optical properties is more significantly enhanced in the nonlinear spectra.

Supplementary Figures

Figure S1. Thermodynamic convex hull of the $K_2O-B_2O_3$ system at 0 K and 3 GPa. Thermodynamically stable structures are denoted by red and green dots. Metastable structures are represented by purple and blue squares.

E0

A0

Figure S2. The phonon dispersion curves of fourteen predicted structures.

Figure S3. Crystal structures. (a) *mP*28-2-K₃BO₃, (b) *hP*14-K₃BO₃, (c) *mP*28-3-K₃BO₃, (d) *mP*28-4-K₃BO₃, (e) *aP*14-K₃BO₃, (f) *aP*28-1-K₃BO₃, (g) *aP*28-2-K₃BO₃, (h) *mP*28-5-K₃BO₃, (i) *aP*22-K₄B₂O₅, (j) *aP*52-2-K₂B₄O₇.

Figure S4. Projected density of states. (a) *hR*21-K₃BO₃, (b) *mP*28-1-K₃BO₃, (c) *mP*28-2-K₃BO₃, (d) *hP*14-K₃BO₃, (e) *mP*28-3-K₃BO₃, (f) *mP*28-4-K₃BO₃, (g) *aP*14-K₃BO₃, (h) *aP*28-1-K₃BO₃, (i) *aP*28-2-K₃BO₃, (j) *mP*28-5-K₃BO₃, (k) *aP*22-K₄B₂O₅, (l) *aP*52-2-K₂B₄O₇, (m) *mP*108-KB₃O₅, (n) *mC*72-KB₃O₅, (o) *oP*112-2-KB₅O₈.

Figure S5. Calculated (a) real and (b) imaginary parts of $\chi_{ijk}^{(2)}(\omega)$. Calculated (c) Im $\chi_{222}^{(2)}(\omega)$, (d) Im $\chi_{333}^{(2)}(\omega)$, (e) Im $\chi_{223}^{(2)}(\omega)$, (f) Im $\chi_{112}^{(2)}(\omega)$ spectra along with the intraband and interband contributions. All Im $\chi_{ijk}^{(2)}(\omega)$ are given in units of 10⁻⁷ esu.

Figure S6. Calculated absolute values of $\chi_{ijk}^{(2)}(\omega)$. All $|\chi_{ijk}^{(2)}(\omega)|$ are expressed in units of pm/V.

Supplementary Tables

Table S1. Crystal structural information and bond valence sum (BVS) for predicted structures.

Phase	Pearson	Space group	Atom	Wyckoff	x(a)	y(b)	z(c)	ΔE	BVS
	symbol	& cell (Å)		position				(eV/f.u.)	
			K1	8 <i>i</i>	0.2530	0.2628	0.2498		0.864
			K2	4g	0.3432	0.4816	0.0000		0.998
			K3	4h	0.4792	0.1619	0.5000		0.974
		Pbam	K4	4f	0.5000	0.0000	0.1849		1.006
		a=10.1355,	K5	4e	0.5000	0.5000	0.3157		1.060
K ₃ BO ₃	oP56	b=10.2473,	B1	4h	0.2483	0.4660	0.5000	-1.4804	2.733
		c=9.6536,	B2	4g	0.4558	0.7486	0.0000		2.736
		$\alpha = \beta = \gamma = 90^{\circ}$	01	8 <i>i</i>	0.3037	0.0101	0.3730		1.774
			02	4h	0.3491	0.3727	0.5000		2.013
			03	4g	0.1312	0.3542	0.0000		2.018
			04	8 <i>i</i>	0.5031	0.3063	0.1268		1.778
		R3m	K1	9b	0.8799	0.1201	0.5327		0.945
K ₃ BO ₃	hR21	a=b=10.7671, c=3.935,	B1	3a	0.0000	0.0000	0.0364	-1.4800	2.733
		$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	01	9 <i>b</i>	0.0754	0.1507	0.0373		1.856
			K1	4e	0.2996	0.4982	0.1082		1.021
		$P2_{1}/c$	K2	4e	0.2970	0.4989	0.5914		0.947
		a=6.1891, b=7.0517,	K3	4e	0.1372	0.6643	0.8177		0.902
K ₃ BO ₃	mP28-1	c=12.2249, α=γ=90°,	B1	4e	0.2909	0.2333	0.3945	-1.4768	2.718
		β=111.69°	01	4e	0.5070	0.7536	0.5048		2.057
			02	4e	0.0716	0.2254	0.4055		1.765
			03	4e	0.3063	0.2799	0.7823		1.762
			K1	4e	0.8607	0.1090	0.5600		0.744
		$P2_{1}/c$	K2	4e	0.7995	0.5047	0.5470		1.016
		a=6.3963, b=9.1951,	K3	4e	0.4518	0.7801	0.2984		1.026
K ₃ BO ₃	mP28-2	c=10.3901, α=γ=90°,	B1	4e	0.2638	0.3235	0.8446	-1.4592	2.726
		$\beta = 127.28^{\circ}$	01	4e	0.6990	0.5621	0.2293		1.785
			02	4e	0.4415	0.2063	0.9105		2.060
			03	4 <i>e</i>	0.9447	0.8254	0.6441		1.667
		$P6_3/m$	K1	6h	0.6696	0.1110	0.7500		0.939
K ₃ BO ₃	hP14	a=b=9.8507, c=4.0335,	B1	2d	0.3333	0.6667	0.7500	-1.4464	2.748
		$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	01	6h	0.3304	0.5227	0.7500		1.855
			K1	4e	0.4939	0.7925	0.6044		0.996
			K2	4e	0.7565	0.8874	0.9068		0.796
		$P2_{1}/c$	K3	4e	0.0875	0.5506	0.8608		0.794
K ₃ BO ₃	mP28-3	a=9.0306, b=5.3518,	B1	4e	0.2673	0.9140	0.7595		2.731
		c=10.5727, α=γ=90°,	01	4e	0.3977	0.7692	0.8296	-1.4449	1.751
		$\beta = 109.03^{\circ}$	02	4e	0.1942	0.8773	0.6214		1.891
			03	4 <i>e</i>	0.2085	0.4000	0.3245		1.817
			K1	4e	0.2555	0.6200	0.4845		0.831
		$P2_{1}/c$	K2	4e	0.0194	0.2749	0.8524		0.949
		a=8.6535, b=5.3321,	K3	4e	0.4111	0.4697	0.8188		0.924

K ₃ BO ₃	mP28-4	c=10.7458,	B1	4 <i>e</i>	0.2330	0.1194	0.6277	-1.4381	2.729
		α=90°, β=103.47°,	01	4e	0.2847	0.9494	0.7293		1.703
		$\gamma=90^{\circ}$	02	4e	0.1052	0.2826	0.6259		1.676
		·	O3	4 <i>e</i>	0.3102	0.3757	0.0263		1.941
			K1	2 <i>i</i>	0.2960	0.3695	0.2434		0.818
		D 1	K2	2i	0.2415	0.8082	0.0680		1.004
		71	К3	2i	0.2104	0.8074	0.5565		0.910
K ₃ BO ₃	aP14	a=5.4682, b=6.3878,	B1	2 <i>i</i>	0.2467	0.2801	0.7486	-1.4320	2.731
		c=7.1551, α=99.06°,	01	2i	0.7768	0.8719	0.1295		1.646
		β=99.27°, γ=101.20°	02	2i	0.1370	0.4615	0.7742		1.757
			03	2i	0.3791	0.2469	0.5972		1.807
			K1	2 <i>i</i>	0.6977	0.9459	0.9035		1.051
			K2	2i	0.6935	0.4846	0.3767		1.082
			K3	2i	0.7106	0.9919	0.3983		0.869
			K4	2 <i>i</i>	0.6921	0.4491	0.9098		0.791
			K5	2 <i>i</i>	0.8874	0.2013	0.1743		0.925
		D 1	K6	2 <i>i</i>	0.8426	0.3391	0.6609		0.770
			B1	2 <i>i</i>	0.7172	0.7313	0.6033		2.712
K ₃ BO ₃	aP28-1	a=6.3446, b=7.2240,	B2	2 <i>i</i>	0.2056	0.2617	0.8651	-1.4239	2.737
		c=11.2510, α=94.22°,	01	2 <i>i</i>	0.4746	0.2466	0.4877		2.014
		β=104.94°, γ=93.75°	02	2 <i>i</i>	0.7039	0.6850	0.7207		1.960
			03	2i	0.0142	0.1957	0.8955		1.673
			04	2i	0.3669	0.1403	0.8577		1.778
			05	2i	0.9224	0.7746	0.5751		1.649
			O6	2i	0.2349	0.4491	0.8431		2.023
			K1	2 <i>i</i>	0.6344	0.3588	0.4291		0.762
			K2	2 <i>i</i>	0.8804	0.0757	0.8432		0.825
			K3	2 <i>i</i>	0.7664	0.4468	0.0154		0.982
			K4	2i	0.7468	0.9873	0.4633		1.051
			K5	2i	0.8612	0.6765	0.6976		0.904
		P1	K6	2i	0.6156	0.8049	0.1546		0.940
		-6 7021 h-9 5099	B1	2i	0.5490	0.1612	0.1744		2.720
K ₃ BO ₃	aP28-2	a=0.7051, 0=8.5088,	B2	2i	0.9194	0.6771	0.3548	-1.4206	2.723
		C=0.0001,	01	2i	0.5404	0.6992	0.8863		1.925
		α=87.80, p=88.11,	02	2i	0.4354	0.0639	0.2719		1.881
		γ=87.64°	03	2i	0.9719	0.6187	0.2127		1.764
			O4	2i	0.9483	0.2305	0.5704		1.915
			05	2i	0.7521	0.1204	0.1423		1.503
			O6	2i	0.7261	0.6565	0.4178		1.919
			K1	4 <i>e</i>	0.4953	0.2791	0.8542		0.999
			K2	4 <i>e</i>	0.5766	0.9751	0.2887		0.966
		$P2_{1}/c$	K3	4 <i>e</i>	0.9456	0.8768	0.1147		0.745
K ₃ BO ₃	mP28-5	a=5.5350, b=14.3019,	B1	4e	0.0504	0.8760	0.7172	-1.4142	2.720
		c=7.2498, α=γ=90°,	01	4e	0.3470	0.6290	0.3949		1.913
		β=124.27°	02	4e	0.0620	0.3198	0.9741		1.667
		-	O3	4e	0.8654	0.5603	0.2283		1.850
			K1	8f	0.8595	0.5397	0.0770		0.967
		C2/c	K2	8 <i>f</i>	0.8611	0.8364	0.7341		0.891
$K_4B_2O_5$	mC44	a=11.7267, b=9.1359,	B1	8 <i>f</i>	0.0874	0.1790	0.6728	-1.5636	2.772
		c=6.9802, α=γ=90°,	01	8 <i>f</i>	0.0521	0.6985	0.0528		1.833

K ₄ B ₂ O ₅	aP22	$p=109.38^{\circ}$ $P\overline{1}$ a=5.5174, b=7.5099, $c=10.3114, \alpha=70.62^{\circ},$ $\beta=75.21^{\circ}, \gamma=77.19^{\circ}$	02 03 K1 K2 K3 K4 B1 B2 01 02 03 04 05 K1 K2 K3 K4 K3 K4 K4 K4 K3 K4 K4 K4 K4 K3 K4 K4 K4 K4 K4 K5 K4 K4 K5 K4 K5 K4 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5	4e 8f 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	0.0000 0.6993 0.2945 0.7144 0.7410 0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.3913 0.3849 0.9668 0.1546 0.3082 0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.2300 0.2191 0.1496 0.4692 0.0718 0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	1.804 1.895 0.951 1.042 0.886 0.814 2.773 2.767 1.940 1.765 1.885 1.845
K4B2O5	aP22	$P\overline{1}$ a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	K1 K2 K3 K4 B1 B2 O1 O2 O3 O4 O5 K1 K2 K3 K4	of 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	0.3993 0.2945 0.7144 0.7410 0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.3849 0.9668 0.1546 0.3082 0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.2191 0.1496 0.4692 0.0718 0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	0.951 1.042 0.886 0.814 2.773 2.767 1.940 1.765 1.885 1.885 1.845
K ₄ B ₂ O ₅	aP22	$P\overline{1}$ a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	K1 K2 K3 K4 B1 B2 O1 O2 O3 O4 O5 K1 K2 K3 K4	2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2	0.2945 0.7144 0.7410 0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.9668 0.1546 0.3082 0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.1496 0.4692 0.0718 0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	0.951 1.042 0.886 0.814 2.773 2.767 1.940 1.765 1.885 1.885
K ₄ B ₂ O ₅	aP22	P1 a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	K2 K3 K4 B1 B2 O1 O2 O3 O4 O5 K1 K2 K3 K4	2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	0.7144 0.7410 0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.1346 0.3082 0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.4692 0.0718 0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	1.042 0.886 0.814 2.773 2.767 1.940 1.765 1.885 1.885
K4B2O5	aP22	P1 a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	K3 K4 B1 B2 O1 O2 O3 O4 O5 K1 K2 K3 K4	2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	0.7410 0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.3082 0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.0718 0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	0.886 0.814 2.773 2.767 1.940 1.765 1.885 1.845
K4B2O5	aP22	P1 a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	K4 B1 B2 O1 O2 O3 O4 O5 K1 K2 K3	2i 2i 2i 2i 2i 2i 2i 2i 2i 2i 2i	0.1831 0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.4673 0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.3430 0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	0.814 2.773 2.767 1.940 1.765 1.885 1.845
K ₄ B ₂ O ₅	aP22	a=5.5174, b=7.5099, c=10.3114, α=70.62°, β=75.21°, γ=77.19°	B1 B2 O1 O2 O3 O4 O5 K1 K2 K3 K4	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.7419 0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.6458 0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.1642 0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	2.773 2.767 1.940 1.765 1.885 1.845
K ₄ B ₂ O ₅	aP22	c=10.3114, α=70.62°, β=75.21°, γ=77.19°	B2 O1 O2 O3 O4 O5 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.8006 0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.8599 0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.3000 0.7060 0.7276 0.8196 0.6002 0.9611 0.1429	-1.5087	2.767 1.940 1.765 1.885 1.845
K2B4O7		β=75.21°, γ=77.19°	01 02 03 04 05 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.4043 0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.9997 0.5163 0.2209 0.2001 0.3064 0.0524	0.7060 0.7276 0.8196 0.6002 0.9611 0.1429		1.940 1.765 1.885 1.845
K ₂ B ₄ O ₇			02 03 04 05 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.2939 0.1161 0.0508 0.3367 0.6343 0.4913	0.5163 0.2209 0.2001 0.3064 0.0524	0.7276 0.8196 0.6002 0.9611 0.1429		1.765 1.885 1.845
K ₂ B ₄ O ₇			03 04 05 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.1161 0.0508 0.3367 0.6343 0.4913	0.2209 0.2001 0.3064 0.0524	0.8196 0.6002 0.9611 0.1429		1.885 1.845
K2B4O7			04 05 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.0508 0.3367 0.6343 0.4913	0.2001 0.3064 0.0524	0.6002 0.9611 0.1429		1.845
K2B4O7			O5 K1 K2 K3	2 <i>i</i> 2 <i>i</i> 2 <i>i</i>	0.3367 0.6343 0.4913	0.3064 0.0524	0.9611		1 666
K2B4O7			K1 K2 K3	2 <i>i</i> 2 <i>i</i>	0.6343 0.4913	0.0524	0.1429		1.000
K2B4O7			K2 K3	2 <i>i</i>	0.4913				1.038
K2B4O7			K3	-		0.5214	0.7793		0.992
K2B4O7			17.4	2i	0.8316	0.6704	0.9827		0.912
K2B4O7			K 4	2i	0.8582	0.8544	0.3985		1.154
K2B4O7		P_1 a=6.9441, b=8.8709, c=11.6204, α=94.71°, β=94.87°, γ=92.33°	B1	2i	0.6782	0.2578	0.5784		2.924
K2B4O7			B2	2i	0.5651	0.7957	0.5870		2.930
K ₂ B ₄ O ₇			B3	2i	0.9739	0.4517	0.2854		2.929
K2B4O7			B4	2i	0.8436	0.0502	0.8447		2.921
K2B4O7			В5	2i	0.8739	0.3071	0.7839		3.135
K ₂ B ₄ O ₇			B6	2i	0.7891	0.2534	0.3773		2.944
K2B4O7			B7	2 <i>i</i>	0.9012	0.8084	0.7158		2.912
K ₂ B ₄ O ₇			B8	2i	0.6784	0.2622	0.9484		2.847
	B ₄ O ₇ aP52		01	2i	0.9068	0.1479	0.3156	-1.4211	1.948
			O2	2 <i>i</i>	0.8223	0.2487	0.5058		1.977
			O3	2i	0.1761	0.5898	0.6526		1.996
			O4	2i	0.4225	0.7890	0.6613		2.051
			05	2i	0.2956	0.7104	0.3040		1.934
			O6	2i	0.0429	0.8448	0.2030		1.977
			07	2 <i>i</i>	0.2032	0.6364	0.1048		2.035
			08	2 <i>i</i>	0.0320	0.4048	0.7540		1.862
			09	2 <i>i</i>	0.4842	0.2327	0.5335		2.039
			O10	2 <i>i</i>	0.2891	0.8972	0.0779		2.101
			011	2i	0.4532	0.7000	0.9800		1.753
			012	2 <i>i</i>	0.8854	0.6463	0.7441		1.931
			013	2i	0.7555	0.8318	0.6182		1.951
			014	2i	0.8536	0.8976	0.8250		1.868

References

- Krogh-Moe J. The crystal structure of the high-temperature modification of potassium pentaborate[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1972, 28(1): 168-172.
- 2 Bubnova R S, Fundamenskii V S, Filatov S K, et al. Crystal structure and thermal behavior of KB₃O₅[C]. Doklady Physical Chemistry. New York: Consultants Bureau., 2004, 398(4-6): 249-253.
- 3 Neumair S C, Vanicek S, Kaindl R, et al. HP-KB₃O₅ Highlights the Structural Diversity of Borates: Corner-Sharing BO₃/BO₄ Groups in Combination with Edge-Sharing BO₄ Tetrahedra[J]. 2011.
- 4 Rashkeev S N, Lambrecht W R L, Segall B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors[J]. Physical Review B, 1998, 57(7): 3905.
- 5 Hu C L, Xu X, Sun C F, et al. Electronic structures and optical properties of Ca₅(BO₃)₃F: a systematical first-principles study[J]. Journal of Physics: Condensed Matter, 2011, 23(39): 395501.