Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting Information

Unraveling the Influence of Organic Cations on Tuning Electronic Structures and Spin-Splitting in Two-Dimensional Layered Organic–Inorganic Tin-Iodine Perovskites

Abdesslem Jedidi^{*1}, Shatha M. Alamri¹, Norah O. Alotaibi¹, Souraya Goumri-Said², Mohammed Benali Kanoun^{*3}

¹ Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia ²College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia

³ Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

Figure S1. a-b) Top view of $(S-MBA)_2SnI_4$, and $(S-CYHEA)_2SnI_4$ crystals, respectively, showing staggered configuration for $(S-MBA)_2SnI_4$, and eclipsed configuration for $(S-CYHEA)_2SnI_4$.

Compound	Bond	Length (A°)	Δd
(S-MBA)2SnI4	Sn-I _{ax(1)}	3.186 A°	
	Sn-I _{ax(4)}	3.156A°	
	Sn-I _{eq(2)}	3.100A°	2.701×10^{-3}
	Sn-I _{eq(3)}	3.048A°	
	Sn-I _{eq(5)}	3.514A°	
	Sn-I _{eq(6)}	3.408A°	
(S-CYHEA) ₂ SnI ₄	Sn-I _{ax(1)}	3.143A°	
	Sn-I _{ax(4)}	3.430A°	
	Sn-I _{eq(2)}	3.265A°	2.124 × 10 ⁻³
	Sn-I _{eq(3)}	3.365A°	
	Sn-I _{eq(5)}	3.043A°	
	Sn-I _{eq(6)}	3.054A°	

 Table S1: Sn-I bond lengths for (S-MBA)₂SnI₄, and (S-CYHEA)₂SnI₄ and their average of distortions.

Compound	Bond	Angle (deg)	σ^2 (deg ²)
(S. MDA) Sml	$I_{(1)} - Sn - I_{(2)}$	85.33°	9.10
	$I_{(1)} - Sn - I_{(3)}$	91.64°	
	$I_{(1)} - Sn - I_{(5)}$	92.60°	
	$I_{(1)} - Sn - I_{(6)}$	87.53°	
	$I_{(4)} - Sn - I_{(2)}$	86.79°	
	$I_{(4)} - Sn - I_{(3)}$	92.22°	
(5-1110A)251114	$I_{(4)} - Sn - I_{(5)}$	95.15°	
	$I_{(4)} = Sn = I_{(6)}$	88.55°	
	$I_{(2)} - Sn - I_{(3)}$	92.71°	
	$I_{(2)} - Sn - I_{(6)}$	86.97°	
	$I_{(3)} - Sn - I_{(5)}$	89.05°	
	$I_{(5)} - Sn - I_{(6)}$	91.23°	
	$I_{(1)} - Sn - I_{(2)}$	88.79°	
(S-CYHEA)2-SnI4	$I_{(1)} - Sn - I_{(3)}$	95.86°	
	$I_{(1)} - Sn - I_{(5)}$	89.45°	
	$I_{(1)} - Sn - I_{(6)}$	85.03°	
	$I_{(4)} - Sn - I_{(2)}$	87.83°	10.79
	$I_{(4)} - Sn - I_{(3)}$	93.77°	
	$I_{(4)} - Sn - I_{(5)}$	93.71°	
	$I_{(4)} - Sn - I_{(6)}$	85.33°	
	$I_{(2)} - Sn - I_{(3)}$	91.37°	
	$I_{(2)} - Sn - I_{(6)}$	88.76°	
	$I_{(3)} - Sn - I_{(5)}$	89.86°	
	$I_{(5)} - Sn - I_{(6)}$	90.01°	

 Table S2:
 I-Sn-I bond angle for (S-MBA)₂SnI₄, and (S-CYHEA)₂SnI₄ and their average of distortions.

Compound	H-bond	Length (A°)
	NH…I ^{ed}	2.89 A°
(S-MBA) ₂ SnI ₆	NH […] I _{eq}	3.06 A°
	NH […] I _{ax}	2.49 A°
	NH […] I _{ax}	2.65 A°
	NH […] I _{ax}	2.48 A°
	NH […] I _{ax}	2.61 A°
	NH […] I _{eq}	2.85 A°
(S-CYHEA)2SnI6	NH […] I _{eq}	2.69 A°
	NH […] I _{ax}	2.45 A°
	NH […] I _{ax}	2.60 A°
	NH […] I _{ax}	2.57A°
	NH […] I _{ax}	2.41A°

Table S3: Hydrogen bond for $(S-MBA)_2SnI_4$ and $(S-CYHEA)_2SnI_4$

Figure S2. The real part of the dielectric function of S-(MBA)₂SnI₄ and S-(CYHEA)₂SnI₄

Figure S3: Illustration of the bond angle labels used in geometry comparison between perovskites in a) S-(NEA)₂SnI₄ show two different bond angles. In contrast (c) S- (MBA)₂SnI₄ and (e) S-(CYHEA)₂SnI₄ exhibit two very similar bond angles, denoted as red and black colors. b, c and f) Side view of the inorganic layer.

Figure S4: Schematic illustration of d-spacing between inorganic layers for a) (NEA)₂SnI₄; b) S-(CYHEA)₂SnI₄; and c) S-(MBA)₂SnI₄.