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SUPPLEMENTARY INFORMATION

Spectrum simulation plane wave cutoff convergence check

We checked the convergence of the spectrum with respect to the plane wave cutoff used in the simulations. The
results from one 0.9 M structure, seen in Figure 1, show that convergence is reached after 500 eV. We used 600 eV
cutoff in the simulations of this work.

FIG. 1. Spectrum from one sample structure calculated using different plane wave cutoff values. The chosen 600 eV spectrum
is on top of both the 500 eV one and the 700 eV one: convergence has been reached.

On the role of standardization of the input

A feedforward NN passes information from a layer (contained by input x) to obtain activation values of the neurons
of the next layer (contained by output z) by applying function

z = g(Ax+ b) (1)

where the weight matrix A and bias vector b are characteristic to the particular neuron layers, and are optimized
during training of the network. The activation function g is taken element-wise for y = Ax+ b y1
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The activation of the output neuron k is the activation function zk = g(yk) of the summation

yk = ak1x1 + · · ·+ akNin
xNin

+ bk =

Nin∑
i=1

akixi + bk. (2)

Now, say that these A and b have been found for each layer during training with non-standardized feature values.
When the input features i are then z-score standarized using respective mean µi and standard deviation σi > 0, the
input vector x′ has components

x′
i =

xi − µi

σi
, i = 1 . . . Nin. (3)

In the first layer, each element aki of the kth row of A have the freedom to take new value a′ki = σiaki. Likewise, the
component bk of the vector b has its freedom take value b′k = bk +

∑
i akiµi. These adaptations for the newly formed

A′ and b′ for the input layer yield

y′k = A′x′ + b′ (4)

=

Nin∑
i=1

a′kix
′
i + b′k (5)

=

Nin∑
i=1

σiaki
xi − µi

σi
+ bk +

Nin∑
i=1

akiµi (6)

=

Nin∑
i=1

akixi + bk +

Nin∑
i=1

akiµi −
Nin∑
i=1

akiµi (7)

=

Nin∑
i=1

akixi + bk = yk (8)

and the same zk = g(yk) as without standardization. Thus the same activation of the first-layer neurons z (and the
output of the whole NN) can always be achieved by adaptation of A and b of the input layer to the new scaling of data.
In other words, transformation (3) will not exclude any solution for training, i.e. the process of the optimization of
matrices A and vectors b guided and decided by emulation performance of the NN for the training data set. We note
that linear scaling of feature values xi will be a special case of Equation (3). Moreover the result remains regardless
of whether scaling is done individually for each i or in coordination for groups of features i. This is because for each
output neuron k and each input feature i there is a specific weight matrix element aki available to adapt.

However, feature scaling has an effect of the L2 regularization during NN training. This regularization punishes
for large |anm| during the optimization of the weight matrices A. Therefore the input feature absolute values |xi|
must be kept in the same order of magnitude for all features i, for them all to have an equal chance to affect the
summation of Equation (2). In other words, non-standardized input features would generate a systematic bias towards
the information in input features larger in their numeric absolute values. We note that the z-score standardization
is not only standard practice, but also a bijective mapping. Thus information is not lost in the process of z-score
standardization, and it can be converted back by the respective inverse transformation.

Descriptor hyperparameter grids

The model selection for each descriptor type was carried out as a joint randomized grid search of the relevant
descriptor and neural network (emulator) parameters. Every atom (S, O and H) of any molecule within 6 Å of the
emission site was included in constructing the descriptor vector, except in the case of CM. A single center, the emission
site Sem, was used with the descriptors LMBTR, SOAP, ACSF and GT. When applicable, the cut of radius "r cut"
was selected as 6.5 Å to include all the atoms which were part of the spectrum calculations.

LMBTR

We used the implementation of the DScribe package [1, 2] for the LMBTR descriptor [3]. The studied parameter
grid is presented in Table I. Our previous knowledge of the descriptor [4] helped with the selection of the grid. Some
unnecessary features (always zero as our system is non-periodic) were removed from the output.
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TABLE I. The LMBTR parameter grid. Where applicable, the selected parameter value is shown in bold.
Parameter Distances (k2) Angles (k3)

geometry function distance angle
grid min 0.7 Å 0◦

grid max 6.5 Å 180◦

grid n 20,40,60,80,100 5,10,20,30,40
grid σ 0.2,0.4,0.6,0.8,1.0 Å 9,12,15,18,21◦

weighting function unity exp
weighting scale — 0.8,1.0,1.2,1.4,1.6

weighting threshold — 1e–8

SOAP

We used the implementation of the DScribe package [1, 2] for the SOAP [5] descriptor. The studied parameter grid
is presented in Table II.

TABLE II. The SOAP parameter grid. Where applicable, the selected parameter value is shown in bold.

Parameter Values
r cut 6.5 Å
n max 4,5,6,7,8
l max 4,5,6,7,8
sigma 0.25,0.5,0.75,1.0 Å
rbf gto

weighting pow
c 0.25,0.5,1.0,2.0,4.0
d 0.25,0.5,1.0,2.0,4.0
m 2,4,6,8
r0 1,2,3,4

ACSF

We used the implementation of the DScribe package [1, 2] for the ACSF [6] descriptor. The studied parameter grid,
inspired by Nguyen and co-workers [7], is presented in Table III. We used G2 and G4 to include both two-body and
three-body (radial and angular) interactions. For G2 we used "Rs n" linearly spaced values from 0.7 Å to 6.5 Å and
η = 12.5/(R2

s). For G4 we always had both λ = −1 and λ = 1, and ζ = 2x where x is a range of integers from 0 to
some value with increments of 1. The parameter η had "η n" values from "η min" to "η max" placed on a logarithmic
grid.

TABLE III. The ACSF parameter grid. Where applicable, the selected parameter value is shown in bold. "Rs n" is for the G2

function and the rest are for the G4.
Parameter Values

r cut 6.5 Å
Rs n 10,20,30,40,50,60,70,80
η min 0.0001,0.001,0.01,0.1
η max 1.0,2.0,3.0,4.0
η n 5,10,15,20,25,30

ζ min 1
ζ max 32,64,128,256

λ −1 and 1



4

GT

The parameter grid for the self-implemented descriptor GT [8] is presented in Table IV. Each of the three components
(scalar, vector and tensor) had the same minimum and maximum gaussian width values. The number of linearly spaced
widths between the minimum and the maximum ("n") was unique for each component.

TABLE IV. The GT parameter grid. Where applicable, the selected parameter value is shown in bold.

Parameter Values
r cut 6.5 Å

width min 0.025,0.05,0.1,0.2,0.4 Å
width max 4,5,6,7,8,9,10 Å
scalar n 10,25,50,75,100,125,150
vector n 10,20,40,60,80,100
tensor n 10,20,40,60,80,100

CM

The parameter grid for the self-implemented descriptor CM [9, 10] is presented in Table V. In our implementation
the columns and rows of the initial full Coulomb matrix are first arranged by grouping the elements. These groups
are then individually distance sorted with respect to the emission site. For each element S, O and H, only a specific
number of the closest atoms (with respect to the emission site Sem) are included in the final matrix. If a given
structure had less atoms of a given element than specified in the grid, the corresponding matrix elements were zeroed.
We constructed the used descriptor vector by flattening the upper triangle (excluding the diagonal) of the Coulomb
matrix.

TABLE V. The CM parameter grid. The selected parameter value is shown in bold.

Parameter Values
sulfur n 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
oxygen n 4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50

hydrogen n 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66

MBDF

The parameter grid for the MBDF developed and implemented by Khan et al. [11] is presented in Table VI.
Excluding the cutoff radius "r cut", the internal parameters of the descriptor selected by the original authors were
assumed to be suitable. Ideally, we would have included these in the search, but this would have made the model
selection computationally too heavy as building the feature vector required significantly more CPU time than the
other descriptors. Instead, we opted for an approach similar to that applied to CM. For each atom (row), the initial
matrix had a total of six features (columns). The rows of the matrix are first arranged by grouping the elements.
These groups are then individually distance sorted with respect to the emission site Sem. For each element S, O and
H, only a specific number rows (obtained from the closest atoms with respect to the emission site) were included in
the final matrix. In the end, all the atoms (within 6 Å of the emission site) are included in the descriptor through
at least one row, as each row contains information about the local environment within "r cut" of one specific center
atom. If a given structure had atoms of a given element than specified in the grid, the corresponding matrix elements
were zeroed.

The authors also introduced a grid-based variant, which is independent of the number of atoms. The variant caused
an increase in the dimensionality of the feature vector including a notable portion of zeros, and was left out of this
work. At the time of download (2023-11-08), the provided code produced six features for each included center atom.
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TABLE VI. The MBDF parameter grid. Where applicable, the selected parameter value is shown in bold.

Parameter Values
r cut 6.5 Å

sulfur n 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
oxygen n 4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50

hydrogen n 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66

Hyperparameter grid search R2-score distributions

The cross validation R2-score distributions and the number of tested hyperparameter combinations for each of the
six descriptors is shown in Figure 2.

FIG. 2. a–f: The CV R2-score distributions and the number of tested hyperparameter combinations for each of the six
descriptors. We used the same bins for each panel.

Visualization of the performance of the best model with standardized spectra

Visualization of the performance of the best NN–LMBTR model on the z-score standardized test set spectra similar
to Figure 2 of the main text is shown in Figure 3.

FIG. 3. Performance of the best NN–LMBTR on the test set with z-score standardized spectra. a: Distribution of R2 scores
for each data point. Examples of known and predicted spectra with R2 score closest to b: the 1st decile, c: the median, and
d: the 9th decile. For each of the three cases, the location along the R2 distribution is shown in panel a as a correspondingly
colored circle.
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