Supplementary Information for

Exploration of Si-N Compounds as High Energy Density Material

Paras Patel¹, Saurav Patel¹, Madhavi H. Dalsaniya^{2,3}, Dominik Kurzydłowski³, Krzysztof J. Kurzydłowski^{2,4} and Prafulla K. Jha^{1*}

¹Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India-390002

²Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland

³Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-038 Warsaw, Poland

⁴Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland

*E-mail: prafullaj@yahoo.com

1. Figures

Fig. S1. Convex hull diagram for the Si-N systems at selected pressures by considering stable phases of N2.

Fig. S2. Structural view of P31c-Si₃N₄ at 0 GPa (a), $P6_3/m$ -Si₃N₄ at 0 GPa (b), Fd-3m-Si₃N₄ at 10 GPa (c); pressure dependent relative enthalpy curve using PBE+D3 functional (d) and r²SCAN+D3 functional (e).

Fig. S3. Structural view at 15 GPa (a); Electronic band structure at 15 GPa (b) and 100 GPa (c); phonon dispersion curves at 0 GPa (d) and 15 GPa (e) of *Pa-3*-SiN₂, respectively.

Fig. S4. Structural view (a and b); phonon dispersion curves (c and d) of P-1-SiN₃ and P2/m-SiN₄ at ambient pressure, respectively.

Fig. S5. The energy barrier for the Cc to C2/m-SiN₆ structural phase transition at ambient pressure.

Fig. S6. Electronic band structure of Cc-SiN₆ at and 100 GPa using HSE06+D3.

Fig. S7. Enthalpy of reaction for SiN_6 and SiN_2 as function of pressure.

Fig. S8. Fluctuations in Energy, volume, and interatomic distances (N-N, Si-N) of *Cc*-SiN₆ with respect to MD steps for 1000 K (a, b) and 1500 K (c, d), respectively.

Fig. S9. Structural snapshot of Cc-SiN₆ after 50 ps of MD run at 0 (a), 300 (b), 1000 (c), 1500 (d) and 2000 K temperature, respectively.

2. Tables

Phase	Pressure	Lattice	Reference
	(GPa)	parameters	
β-Si ₃ N ₄		a = b = 7.595 Å	Experimental ¹
		$c = 2.902 \text{\AA}$	_
		a = b = 7.615 Å	This work
		c = 2.909 Å	(PBE+D3)
		a = b = 7.585 Å	This work
$P6_3/m$	0	$c = 2.898 \text{\AA}$	(r2SCAN+D3)
		a = b = 7.657 Å	This work
		c = 2.925 Å	(PBE)
		a = b = 7.632 Å	Theory ²
		$c = 2.915 \text{\AA}$	
		a = b = 7.754Å	Experimental ³
		c = 5.621 Å	-
	0	a = b = 7.760 Å	This work
		$c = 5.627 \text{\AA}$	(PBE+D3)
α -Si ₃ N ₄		a = b = 7.731 Å	This work
P31c		$c = 5.604 \text{\AA}$	(r2SCAN+D3)
		a = b = 7.807Å	This work
		$c = 5.658 \text{\AA}$	(PBE)
		a = b = 7.781Å	Theory ²
		$c = 5.641 \text{\AA}$	
	0	a=7.736 Å	Experimental ⁴
		a=7.732Å	This work
			(PBE+D3)
γ-Si ₃ N ₄		a=7.708 Å	This work
Fd-3m			(r2SCAN+D3)
		a = 7.785 Å	This work
			(PBE)
		a=7.773 Å	Theory ²

Table S1. Comparison of structural parameters of Si_3N_4 .

Phase	Pressure (GPa)	Lattice parameters	Reference
$Pa\overline{3}$ -SiN ₂		a=4.437 Å	Experimental ⁵
2		a=4.439 Å	This work
			(PBE+D3)
	0	a=4.428 Å	This work
			(r2SCAN+D3)
		a=4.469 Å	This work
			(PBE)

Table S2. Comparison of structural parameter of SiN₂.

Table 3. Charge analysis and interatomic distance between Si-N and N-N at 20 GPa using r2SCAN+D3 functionals at in Si_3N_4 , SiN_2 and SiN_6 .

Propertie s	$\mathrm{Si}_{3}\mathrm{N}_{4}\left(Fd-3m ight)$	$SiN_2 (Pa^{\overline{3}})$	SiN ₆ (<i>C2/m</i>)	SiN ₆ (Cc)
q(Si)	1.42, 1.54	1.38 (x1)	1.23	1.40
q(N)	-1.09	-0.69 (x2)	-0.21 (x6)	-0.22(x4), -0.25(x2)
R(Si-N)	1.731(x4), 1.840(x6)	1.855	1.843(x6), 1.820(x4)	1.822(x6), 1.814(x4)
ICOBI (Si-N)	0.76, 0.51	0.54	0.54, 0.55	0.53, 0.54
R(N-N)	-	1.455	1.174	1.343, 1.358
ICOBI (N-N)	-	0.95	1.91	1.05, 1.06

References:

- 1 R. Grün, The crystal structure of β -Si₃N₄: structural and stability considerations between α - and β -Si₃N₄, *Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.*, 1979, **35**, 800–804.
- 2 D. Chen and B. H. Yu, Pressure-induced phase transition in silicon nitride material, *Chinese Phys. B*, DOI:10.1088/1674-1056/22/2/023104.
- J. Y. Zhang, Y. X. Chen, T. L. Guo, Z. X. Lin and T. H. Wang, Sub-band-gap photoconductivity of individual α-Si₃N₄ nanowires, *Nanotechnology*, , DOI:10.1088/0957-4484/18/32/325603.
- 4 H. . Hintzen, M. R. M. . Hendrix, H. Wondergem, C. . Fang, T. Sekine and G. de With, Thermal expansion of cubic Si_3N_4 with the spinel structure, *J. Alloys Compd.*, 2003, **351**, 40–42.
- 5 K. Niwa, H. Ogasawara and M. Hasegawa, Pyrite form of group-14 element pernitrides synthesized at high pressure and high temperature, *Dalt. Trans.*, 2017, **46**, 9750–9754.