Electronic Supplementary Information for

Intersystem Crossing in a Dibenzofuran-Based RoomTemperaturePhosphorescentLuminophoreInvestigated by Non-Adiabatic Dynamics

Pelin Ulukan,¹ Elise Lognon,² Saron Catak,¹ and Antonio Monari^{2,*}

1) Bogazici University 34342 Bebek/Istanbul Turkey.

2) Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France.

Figure S1. Vertical transitions energies calculated from the Franck-Condon geometry with different d exchange correlation functionals.

Table S1 3D representations of the S_0 , S_1 , T_1 , T_2 and T_3 equilibrium geometries of the RTP luminophore, as optimized at M06-2X/6-31+G(d,p) level of theory in toluene.

Table S2 Evolution of the torsion angles around the carbonyl moiety for the FC, S_1 , T_1 , T_2 and T_3 equilibrium geometries, respectively.

Torsion Angle	$FC/S_1/T_1/T_2/T_3$
α	-30.50 / -15.35 / -19.29 / -9.40 /-17.34
β	-26.60 / -34.85 / -26.60 / -23.12 / -15.26

Table S3 Excited states energies calculated with different basis sets using the CAM-B3LYP and with different functionals using the 6-31G basis set in toluene at the S₀ equilibrium geometry.

	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T4	T₅
6-31G	3.92	4.78	5.07	5.21	3.30	3.63	3.88	4.01	4.22
6-31G(d)	3.96	4.72	5.00	5.13	3.33	3.58	3.86	3.94	4.13

6-31G(d,p)	3.96	4.71	4.99	5.13	3.33	3.57	3.85	3.94	4.13
6-31+G(d)	3.98	4.62	4.87	5.01	3.37	3.56	3.84	3.88	4.08
6-31+G(d,p)	3.98	4.61	4.87	5.00	3.37	3.56	3.84	3.88	4.07
6-311++G(d,p)	3.97	4.59	4.84	4.98	3.35	3.54	3.82	3.86	4.05
	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
M06-2X	3.81	4.66	4.92	5.04	3.35	3.85	3.99	4.17	4.24
M06-2X PBE0	3.81 3.79	4.66 4.14	4.92 4.34	5.04 4.70	3.35 3.19	3.85 3.45	3.99 3.64	4.17 3.75	4.24 3.79
M06-2X PBE0 ωB97XD	3.81 3.79 3.97	4.66 4.14 4.66	4.92 4.34 4.93	5.04 4.70 5.05	3.35 3.19 3.40	3.85 3.45 3.64	3.99 3.64 3.91	4.17 3.75 3.96	4.24 3.79 4.13

Table S4 Excited states energies calculated with different basis sets using the CAM-B3LYP functional and with different functionals using the 6-31G basis set in toluene at the S_1 equilibrium geometry.

	S ₁	S ₂	S ₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
6-31G	3.37	4.63	4.77	5.01	2.74	3.32	3.62	3.91	4.15
6-31G(d)	3.38	4.56	4.74	4.97	2.76	3.33	3.56	3.83	4.07
6-31G(d,p)	3.38	4.56	4.74	4.97	2.76	3.33	3.55	3.83	4.06
6-31+G(d)	3.42	4.44	4.62	4.85	2.83	3.34	3.52	3.77	4.00
6-31+G(d,p)	3.42	4.44	4.61	4.85	2.83	3.33	3.52	3.76	4.00
6-311++G(d,p)	3.41	4.41	4.60	4.83	2.82	3.33	3.51	3.74	3.98
	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
M06-2X	3.22	4.65	4.79	5.07	2.71	3.48	3.97	4.13	4.32
PBE0	3.20	3.98	4.13	4.67	2.57	3.22	3.51	3.65	3.77
ωB97XD	3.37	4.69	4.84	5.01	2.77	3.41	3.72	3.99	4.21
CAM-B3LYP	3.37	4.63	4.77	5.01	2.74	3.32	3.62	3.91	4.15

Table S5 Excited states energies calculated with different basis sets using the CAM-B3LYP functional and with different functionals using the 6-31G basis set in toluene at the T_1 equilibrium geometry.

	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
6-31G	3.17	4.51	4.61	4.92	2.52	3.06	3.54	3.82	4.03
6-31G(d)	3.17	4.44	4.59	4.89	2.54	3.07	3.49	3.73	3.97
6-31G(d,p)	3.17	4.44	4.59	4.89	2.53	3.07	3.49	3.72	3.97
6-31+G(d)	3.22	4.32	4.46	4.76	2.62	3.11	3.44	3.67	3.89
6-31+G(d,p)	3.21	4.31	4.46	4.76	2.62	3.11	3.44	3.66	3.89
6-311++G(d,p)	3.20	4.29	4.44	4.74	2.61	3.10	3.42	3.64	3.88
	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
M06-2X	3.04	4.52	4.63	4.97	2.51	3.16	3.83	4.06	4.20
PBE0	3.00	3.89	4.04	4.54	2.36	2.95	3.41	3.51	3.73
ωB97XD	3.16	4.57	4.68	4.92	2.55	3.13	3.63	3.91	4.11
CAM-B3LYP	3.17	4.51	4.61	4.92	2.52	3.06	3.54	3.82	4.03

Table S6 Excited states energies calculated with different basis sets using the CAM-B3LYP functional and with different functionals using the 6-31G basis set in toluene at the T_2 equilibrium geometry.

	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T₃	T ₄	T₅
6-31G	3.71	4.48	4.66	5.00	3.02	3.29	3.45	3.86	4.14
6-31G(d)	3.72	4.42	4.62	4.96	3.02	3.25	3.45	3.76	4.06
6-31G(d,p)	3.72	4.42	4.61	4.96	3.02	3.25	3.45	3.76	4.06
6-31+G(d)	3.72	4.30	4.52	4.85	3.03	3.21	3.47	3.72	4.00
6-31+G(d,p)	3.72	4.29	4.52	4.84	3.02	3.21	3.47	3.71	4.00
6-311++G(d,p)	3.71	4.27	4.50	4.82	3.01	3.19	3.45	3.69	3.98
	S ₁	S ₂	S₃	S ₄	T ₁	T ₂	T₃	T ₄	T₅
M06-2X	3.58	4.50	4.69	5.06	3.07	3.50	3.62	4.15	4.30
PBE0	3.49	3.96	4.09	4.72	2.86	3.21	3.29	3.67	3.78
ωB97XD	3.71	4.55	4.71	5.00	3.08	3.37	3.51	3.95	4.19
CAM-B3LYP	3.71	4.48	4.66	5.00	3.02	3.29	3.45	3.86	4.14

Table S7 Excited states energies calculated with different basis sets using the CAM-B3LYP functional and with different functionals using the 6-31G basis set in toluene at the T_3 equilibrium geometry.

	S1	S ₂	S₃	S ₄	T ₁	T ₂	T ₃	T ₄	T₅
6-31G	2.84	4.26	4.32	4.70	2.22	2.52	3.32	3.70	3.85
6-31G(d)	2.83	4.20	4.29	4.67	2.22	2.52	3.27	3.61	3.79
6-31G(d,p)	2.83	4.20	4.29	4.67	2.22	2.52	3.27	3.61	3.79
6-31+G(d)	2.89	4.06	4.15	4.50	2.33	2.60	3.20	3.51	3.75
6-31+G(d,p)	2.89	4.06	4.15	4.49	2.33	2.60	3.20	3.51	3.75
6-311++G(d,p)	2.88	4.04	4.14	4.47	2.31	2.59	3.18	3.49	3.73
	S1	S ₂	S₃	S ₄	T ₁	T ₂	T₃	T4	T₅
M06-2X	2.75	4.26	4.32	4.72	2.24	2.55	3.53	3.83	4.11
PBE0	2.67	3.69	3.81	4.29	2.06	2.40	3.17	3.26	3.69
ωB97XD	2.83	4.33	4.39	4.72	2.26	2.58	3.39	3.79	3.94
CAM-B3LYP	2.84	4.26	4.32	4.70	2.22	2.52	3.32	3.70	3.85

Table S8 Topological Φ_s index of the S₁, T₁, T₂, and T₃ states obtained from the S₀ equilibrium geometries with different functionals using the 6-31G basis set.

Functional	S ₁	T 1	T ₂	T₃
M062X	0.45	0.48	0.95	0.88
PBE0	0.47	0.61	0.92	0.76
ωB97XD	0.45	0.57	0.93	0.90
CAMB3LYP	0.45	0.65	0.91	0.89

Table S9 Difference transition matrix obtained from the SH trajectories.

	S ₀	S ₁	T ₁	T ₂	T ₃	T ₄
S ₀	0	0	0	0	0	0
S ₁	0	0	0	-18	-10	-2

T ₁	0	0	0	46	-25	-5	-
T ₂	0	18	-46	0	38	-4	
T ₃	0	10	25	-38	0	6	Ī
T ₄	0	2	5	4	-6	0	

S₀ Equilibrium Geometry

Н	4.378600	1.763800	-1.285100
С	4.477300	0.935700	-0.590200
С	4.682100	-1.161500	1.237800
С	3.322600	0.411300	0.001300
С	5.723900	0.397900	-0.288100
С	5.827000	-0.650900	0.627700
С	3.429900	-0.639100	0.919400
Н	6.615500	0.797800	-0.760100
Н	6.800500	-1.066200	0.869200
Н	2.540300	-1.032300	1.402400
Н	4.763000	-1.965800	1.961800
С	2.009200	1.056100	-0.322500
0	1.963800	2.248800	-0.579800
С	0.757400	0.237100	-0.324600
С	-1.582700	-1.201900	-0.417900
С	-0.446100	0.894800	-0.055300
С	0.768700	-1.133300	-0.652100
С	-0.406200	-1.875500	-0.712700
С	-1.629300	0.163900	-0.090000
Н	-0.433600	1.955700	0.174000
Н	1.710400	-1.618000	-0.887800
Н	-0.409800	-2.925900	-0.979300
0	-2.826300	-1.763400	-0.412100
С	-3.035600	0.455200	0.136400
С	-3.701700	-0.759000	-0.076800
С	-3.774300	1.587900	0.486900
Н	-3.283200	2.540800	0.656500
С	-5.154300	1.463200	0.611400
Н	-5.748600	2.329300	0.882300
С	-5.793800	0.232400	0.391400
Н	-6.871800	0.166900	0.495900
С	-5.075100	-0.908400	0.040800
Н	-5.555100	-1.864700	-0.132600

S ₁ E	Equilibrium Geometry		
Н	4.409100	1.959600	-1.044200
С	4.500500	1.072500	-0.425800
С	4.734300	-1.222500	1.140400
С	3.337400	0.384900	-0.019700
С	5.755900	0.606800	-0.052900
С	5.883800	-0.544500	0.724600
С	3.472200	-0.766700	0.783600
Н	6.641400	1.145300	-0.376500
Н	6.865600	-0.907000	1.010300
Н	2.589000	-1.282200	1.145800
Н	4.821600	-2.109000	1.761200
С	2.030700	0.893800	-0.398700
0	1.927100	2.110500	-0.837400
С	0.751200	0.157500	-0.381500
С	-1.632300	-1.223100	-0.416000
С	-0.434700	0.848600	-0.087800
С	0.714900	-1.214500	-0.729100
С	-0.475800	-1.926700	-0.732400
С	-1.637000	0.143900	-0.104900
Н	-0.403400	1.902100	0.169400
Н	1.636300	-1.714100	-1.008400
Н	-0.509100	-2 . 979700	-0.987600
0	-2.889400	-1.756200	-0.374700
С	-3.030000	0.473100	0.148100
С	-3.731000	-0.727300	-0.034600
С	-3.732700	1.628600	0.499400
Н	-3.215100	2.571200	0.645800
С	-5.112200	1.540600	0.655400
Н	-5.678400	2.424900	0.927700
С	-5.787100	0.323500	0.465800
Н	-6.863800	0.286700	0.594700
С	-5.105200	-0.839400	0.115000
Н	-5.613000	-1.785300	-0.035100

T ₁ Equilibrium Geometry					
Н	4.311700	1.994500	-1.068600		
С	4.462900	1.101900	-0.469700		
С	4.849700	-1.217300	1.032400		
С	3.339300	0.371300	-0.015400		
С	5.748900	0.666300	-0.179700		
С	5.954200	-0.497800	0.564100		
С	3.558200	-0.789700	0.762200		
Н	6.599000	1.234600	-0.544100		
Н	6.960900	-0.837300	0.783800		
Н	2.712200	-1.331600	1.171900		
Н	4.999300	-2.111800	1.629100		
С	2.011700	0.850400	-0.296800		
0	1.902000	2.140000	-0.619800		
С	0.752000	0.130800	-0.288800		
С	-1.644200	-1.244600	-0.356100		
С	-0.446600	0.830200	-0.043600		
С	0.711100	-1 . 254900	-0.599500		
С	-0.481400	-1.960000	-0.622000		
С	-1.649400	0.129900	-0.079500		
Н	-0.421500	1.888800	0.193900		
Н	1.634400	-1.766700	-0.848200		
Н	-0.513200	-3.017900	-0.856400		
0	-2.905800	-1.771000	-0.338200		
C	-3.047700	0.471200	0.126800		
С	-3.750100	-0.729800	-0.046400		
C	-3.753200	1.638100	0.430800		
Н	-3.234200	2.581300	0.569300		
C	-5.137100	1.561400	0.550400		
Н	-5.705400	2.454900	0.785800		
С	-5.813400	0.343600	0.371300		
Н	-6.893500	0.315300	0.471100		
С	-5.128700	-0.830900	0.067700		
Н	-5.637600	-1.777500	-0.073400		

T ₂ Equilibrium Geometry					
Н	4.303400	2.161500	-0.708400		
С	4.469400	1.188200	-0.265300		
С	4.735900	-1.335800	0.942700		
С	3.284200	0.377500	-0.032400		
С	5.721600	0.704500	0.020900		
С	5.885500	-0.563900	0.615400		
С	3.476900	-0.884600	0.651800		
Н	6.597100	1.306000	-0.204500		
Н	6.875700	-0.942700	0.843000		
Н	2.618100	-1.471900	0.959300		
Н	4.863000	-2.290900	1.443400		
С	2.017300	0.984000	-0.374500		
0	1.895500	2.169700	-0.678400		
С	0.785300	0.148400	-0.339100		
C	-1.615600	-1.235800	-0.363500		
C	-0.451600	0.871300	-0.150500		
С	0.731800	-1.260500	-0.690000		
C	-0.439600	-1.963200	-0.675100		
С	-1.626900	0.167300	-0.117800		
Н	-0.373700	1.941800	-0.010800		
Н	1.650700	-1.761100	-0.974200		
Н	-0.490900	-3.020000	-0.911000		
0	-2.841900	-1.769000	-0.294900		
C	-3.030300	0.484300	0.117700		
С	-3.715300	-0.729600	-0.003200		
С	-3.748100	1.642400	0.409600		
Н	-3.245200	2.598500	0.509300		
С	-5.130500	1.537000	0.568900		
Н	-5.710700	2.424700	0.796100		
С	-5.783900	0.305200	0.440900		
Н	-6.859700	0.256200	0.570500		
С	-5.080500	-0.867000	0.148300		
Н	-5.570900	-1.827800	0.044300		

T₃ Equilibrium Geometry					
Н	4.256200	2.102400	-0.764000		
С	4.414300	1.115100	-0.342100		
С	4.732100	-1.384600	0.851900		
С	3.287300	0.417700	0.098200		
С	5.685300	0.553000	-0.227100		
С	5.849300	-0.698600	0.366600		
С	3.463700	-0.822900	0.718500		
Н	6.553000	1.094800	-0.593000		
Н	6.840800	-1.129100	0.471300		
Н	2.603300	-1 . 347900	1.133700		
Н	4.855000	-2 . 343300	1.346900		
С	1.944700	1.124400	-0.017200		
0	1.821200	2.331000	-0.156700		
С	0.793400	0.295500	-0.210000		
С	-1.564800	-1.253300	-0.348100		
С	-0.487800	0.973000	-0.292300		
С	0.778000	-1.080700	-0.687600		
С	-0.367100	-1.892600	-0.610400		
С	-1.647900	0.166700	-0.228600		
Н	-0.486600	2.053900	-0.280700		
Н	1.685800	-1.496000	-1.113000		
Н	-0.321300	-2 . 957700	-0.812200		
0	-2.802400	-1.839700	-0.211800		
С	-3.013400	0.439700	0.013100		
С	-3.671100	-0.826700	0.004000		
С	-3.762500	1.619500	0.229400		
Н	-3.274200	2.587100	0.241700		
С	-5.119700	1.490500	0.420100		
Н	-5.730100	2.370000	0.587500		
С	-5.743500	0.214400	0.401200		
Н	-6.816200	0.158100	0.553400		
С	-5.036800	-0.964700	0.193600		
Н	-5.517100	-1.935000	0.176700		