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S1 Mechanical properties of M,COT and MM'CO, Janus MXenes; M, M’'=Sc, Ti, Zr, Hf;
T=25, Se

The equilibrium lattice constants, elastic stiffness constants C;;, Young’s Modulus, and Poisson ratio of 14 Janus MXenes have been
calculated and presented in Table S1. The results suggest that all Janus MXene materials satisfy Born-Huang’s criteria and are mechan-
ically stable at their equilibrium volumes. In the M,COT series, C;; gradually increases as M changes from Sc to Hf. This happens due
to the gradual increase in mass of the transition metal. The same trend is observed for compounds of MM’'COj series. Young’s Modulus
(¥) and Poisson Ratio (v) stand for the stiffness and mechanical flexibility of a material, respectively. The calculated Y of each M,COS is
larger than that of MyCOSe.This is due to the larger bond lengths of M-Se pairs than that of M-S pairs. Weaker M-Se bonds with respect
to M-S bonds are responsible for this trend. For the same reason, v of MyCOSe are greater than those of MyCOS, signifying greater
flexibility of M;COSe MXenes. Among the compounds of MM/CO, (M/M’= Ti, Zr, Hf) series, ZrHfCO, has the heightest Y implying
mechanically stability at a higher strain in comparison with TiZrCO, & TiHfCO,. For the same reason, ScZrCO, & ScHfCO, can have
mechanical stability at higher strain in comparison with ScTiCO,.

Table S1 The lattice parameter (a = b), Elastic Constants (C;;), Young's Modulus (Y) & Poisson Ratio (v) of 14 Janus MXenes considered.

Compounds a=b Cn [&% Clo Cos Y v
A (Nm~") (Nm~") (Nm~") (Nm~") (Nm~")
Scy,COS 3.63 123.96 123.78 76.73 23.57 76.34 0.62
ScyCOSe 3.66 120.76 120.76 72.26 24.25 77.52 0.60
Ti,COS 3.11 177.48 177.48 64.10 56.69 154.33 0.36
TioCOSe 3.12 157.79 157.79 99.82 28.99 94.65 0.63
Zr,COS 3.39 212.21 212.06 63.18 74.47 193.31 0.30
Zr5COSe 3.38 199.49 199.49 64.96 67.26 178.34 0.33
Hf,COS 3.34 234.77 234.49 59.68 87.48 219.45 0.25
Hf;COSe 3.34 223.32 223.32 62.53 80.40 205.81 0.28
ScTiCO, 3.15 161.15 161.15 75.84 42.66 125.47 0.47
ScZrCO, 3.30 181.24 181.24 79.16 51.04 146.67 0.44
ScHfCO, 3.27 176.83 176.83 78.69 49.07 141.81 0.45
TiZrCO, 3.19 249.51 248.35 91.50 78.71 215.29 0.37
TiHfCO4 3.16 265.00 263.45 89.61 87.31 233.83 0.34
ZrHfCO, 3.29 278.05 277.92 78.34 99.83 255.91 0.28

S2 Dynamical and thermal stability of M,COT and MM’CO, Janus MXenes; M, M'=Sc, Ti,
Zr, Hf; T=S, Se

Figures (ST)-(S3) show results of phonon dispersion relations for 14 Janus MXenes considered in this work at various bi-axial strains
along with variations of their Free energies and temperatures with time when the systems are subjected to the highest strain where they
are dynamically stable. We find that most systems are dynamically stable up to 4% of tensile strain. At the highest strain for sustenance
of dynamical stability, all compounds are thermally stable at room temperature.
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Fig. S1 Phonon dispersion curves of M,COT (M =Sc, Ti; T=S, Se) MXenes under -2% to 6% Biaxial strains. Variations in free energy and
temperature with respect to AIMD simulation time for the systems at maximum possible strains where they are dynamically stable are shown in the
rightmost panels of (a)-(d). The initial and final structures (at 300K) are also shown.
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Fig. S2 Phonon dispersion curves of MoCOT (M =Zr, Hf; T=S, Se) MXenes under -2% to 6% Biaxial strains.Variations in free energy and temperature
with respect to AIMD simulation time for the systems at maximum possible strains where they are dynamically stable are shown in the rightmost

panels of (a)-(d). The initial and final structures (at 300K) are also shown.
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Fig. S3 Phonon dispersion curves of MM'CO, ((M, M'=Sc, Ti, Zr, Hf) MXenes under -3% to 5% Biaxial strains.Variations in free energy and
temperature with respect to AIMD simulation time for the systems at maximum possible strains where they are dynamically stable are shown in the
rightmost panels of (a)-(f). The initial and final structures (at 300K) are also shown.
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S3 Electronic Band Structures of seven Janus MXenes under Bi-axial strain

In Figure we present the band structures of seven Janus compounds as a function of compressive and tensile strains. These
compounds are semiconductors at their equilibrium volumes. We find that baring Zr,COS and Hf,COS at 4% compressive strain, all

compounds remain semiconductors.
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Fig. S4 Electronic Band Structures of a) Sc2COS, b) Sc,COSe, ¢) Zr,COS, d) Hf,COS, e) TiZrCO,, f) TiIHfCO, and g) ZrHfCO, under various
Biaxial strains. The Fermi level in each case is marked with a horizontal red line.
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S4 Electrostatic potential profile of six Janus MXenes as a function of strain

In Figure variations in the electrostatic potentials across the surfaces of six M,COT Janus MXenes are presented. The large elec-
tronegativity difference between O and T in these compounds induces an internal electric field, causing a potential difference across
the surfaces. We find that the potential difference increases with strain. Significant changes are observed in Sc-based compounds and
in Hf,COSe.
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Fig. S5 Variation in electrostatic potential profiles of a) Sc2COS, b) Sc2COSe, ¢) Ti2COS, d) ZroCOS, e) Hf2COS & f) Hf; COSe with Biaxial strain.
Calculations are done by setting the vacuum level of (00-1) surface to zero eV.
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