Figure S1. Impedance spectra with different temperature from 25 to 70 °C for (a) PEO/LiTFSI/SN (b) PEO/LiTFSI/SN@(B.N-CNF), with (c) activation energy E_a, and (d) TGA curves for the samples of PEO/LiTFSI/SN@(B.N-CNF), PEO/LiTFSI/SN, and PEO/LiTFSI.

Figure S2. DC test for (a)PEO/LiTFSI and (b) PEO/LiTFSI/SN.

Figure S3 Bar chart comparing the galvanostatic cycling performance based on PEO with the reported literatures.

[1] K. K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E. D. Wachsman, L. Hu, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc. Natl. Acad. Sci. USA 113 (2016) 7094.

[2] Z. Li, F. Liu, S. Chen, F. Zhai, Y. Li, Y. Feng, W. Feng, Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries, Nano Energy 82 (2021) 105698.

[3] Y. Ma, J. Wan, Y. Yang, Y. Ye, X. Xiao, D. T. Boyle, W. Burke, Z. Huang, H. Chen, Y. Cui, Z. Yu,
S. T. Oyakhire, Y. Cui, Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries, Adv. Energy Mater. 12 (2022) 2103720.

[4] Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. Yang, F. Kang, Y. He, Low resistance–integrated all-solid-state battery achieved by Li₇La₃Zr₂O₁₂ nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder, Adv. Funct. Mater. 29 (2018) 1805301.

[5] L. Chen, Y. Li, S. P. Li, L. Z. Fan, CW Nan, J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic", Nano Energy 46 (2018) 176-184.

[6] R. Fang, B. Xu, N. S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J. B. Goodenough, Li_2S_6 -Integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries, Angew. Chem. Int. Ed. 60 (2021) 2-8.

[7] Z. Guo, Y. Pang, S. Xia, F. Xu, J. Yang, L. Sun, S. Zheng, Uniform and anisotropic solid electrolyte membrane enables superior solid-state Li metal batteries, Adv. Sci. 8 (2021) 2100899.

[8] D. Li, L. Chen, T. Wang, L. Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS Appl. Mater. Interfaces 10 (2018) 7069.

[9] Y. H. Zhang, W. Lu, L. N. Cong, J. Liu, L. Q. Sun, A. Mauger, C. M. Julien, H. M. Xie, J. Liu, Crosslinking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery, J. Power Sources 2019, 420, 63-72.

[10] Q. Wang, X. Liu, Z. Cui, X. Shangguan, H. Zhang, J. Zhang, K. Tang, L. Li, X. Zhou, G. Cui, A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries, Electrochim. Acta 337 (2020) 135843.

	Rate performance (60 °C)					_	Cycling performance (60 °C)				_
SSEs	0.1C	0.2C	0.5C	1C	2C		Rate	1st	Cycles	Retention	Refs
PEO/LiTFSI/	165	158	145	121	98		1C	126	100	74%	1
Ca-CeO ₂											
PEO@GF	158	154	106	46	7		0.2C	142	100	91.5%	2
PEO/LiTFSI/LATP/PA N		144	130	119	90		0.2C	144	100		3
PEO/LiTFSI/PAN	155.9	154.3	145.3	98.7	41.5		0.5C	165.3	100	84.2%	4
PEO/PLSSCQD	168	158	140	133	124		0.2C	155.9	100	94.3%	5
PEO/LiTFSI/PA6		162	150	138	127		1C	130	100	91.5%	6
PEO/LiTFSI/LATP	150	146	130	108			0.1C	148	100	91.8%	7
PEO/ LiTFSI/LLZTO/PEG	150	149	137	125	107		0.2C	150	100	92%	8
This work	159.1	156.4	148.2	138	120		0.2 C	150.3	100	96.9%	

Table S1 Comparing the performance of ASSBs with PEO-based SSEs versus the reported literatures.

[1] H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Stable seamless interfaces and rapid ionic conductivity of Ca–CeO₂/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery, Adv. Energy Mater. 10 (2020) 2000049.

[2] X. Yang, Q. Sun, C. Zhao, X. Gao, K. R. Adair, Y. Liu, J. Luo, X. Lin, Ji. Liang, H. Huang, L. Zhang, R. Yang, S. Lu, R. Li, X. Sun, High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes, Nano Energy 61 (2019) 567-575.

[3] D. Li, L. Chen, T. Wang, L. Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS Appl. Mater. Interfaces 10 (2018) 7069.

[4] Y. Ma, J. Wan, Y. Yang, Y. Ye, X. Xiao, D. T. Boyle, W. Burke, Z. Huang, H. Chen, Y. Cui, Z. Yu, S. T. Oyakhire, Y. Cui, Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries, Adv. Energy Mater. 12 (2022) 2103720.

[5] Z. Li, F. Liu, S. Chen, F. Zhai, Y. Li, Y. Feng, W. Feng, Single Li ion conducting solid-state polymer electrolytes based on carbon quantum dots for Li-metal batteries, Nano Energy 82 (2021) 105698.

[6] L. Gao, J. Li, J. Ju, B. Cheng, W. Kang, N. Deng, High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery, J. Energy Chem. 54 (2021) 644.

[7] Y. Huang, Z. Zhang, H. Gao, J. Huang, C. Li, Li_{1.5}Al_{0.5}Ti_{1.5}(PO₄)₃ enhanced polyethylene oxide polymer electrolyte for all-solid-state lithium batteries, Solid State Ionics 356 (2020) 115437.
[8] L. Chen, Y. Li, S. P. Li, L. Z. Fan, CW Nan, J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic", Nano Energy 46 (2018) 176-184.