Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Electronic supplementary information (ESI) for PCCP.

Supporting Information

Chemical magnetism – surface force to move motors

Boris Kichatov*, Alexey Korshunov, Vladimir Sudakov,

Semenov Federal Research Central for Chemical Physics, Moscow, Russia

*Correspondence to: b9682563@yandex.ru

1. Supporting Videos

Video S1: Movement of paramagnetic nanoparticles Fe_3O_4 in the magnetic field of CM ($Cu - Zn, CoSO_4$). The video is accelerated by a factor of 9 ×.

Video S2: Movement of paramagnetic nanoparticles Fe_3O_4 in the magnetic field of CM $(Cu - Al, CuSO_4)$. The video is accelerated by a factor of 8 ×.

Video S3: Movement of swimmer Fe - Ni in a non-uniform magnetic field on a copper sulfate solution surface. The video in real time.

Video S4: Movement of swimmer Fe - Ni in a non-uniform magnetic field on a copper sulfate solution surface when the swimmer is turned by 180° . The video is accelerated by a factor of 2 ×.

Video S5: Movement of swimmer Fe - Ni in a non-uniform magnetic field on a copper sulfate solution surface when changing the polarity of the coil. The video in real time.

Video S6: Movement of swimmer Fe - Ni in a non-uniform magnetic field on a copper sulfate solution surface when changing the polarity of the coil and turning the swimmer by 180° . The video is accelerated by a factor of 2 ×.

2. Supporting figure

Fig. S1. Dependence of the minimum current through the coil, corresponding to the start of motor movement, on the geometric dimensions of the CM (22 °C, copper sulfate, Fe - Ni, coil N $^{\circ}$ 1).