SUPPORTING INFORMATION

New metallic ice phase under high pressure

Yingying Huang^{1,*}, Liuyuan Zhu¹, Hanlin Li¹, Haiping Fang^{1,2}, Ruoyang Chen^{1,*}, Shiqi Sheng^{1,*}

¹School of Physics, East China University of Science and Technology, Shanghai, 200237, China. ²School of Physics, Zhejiang University, Hangzhou, 310027, China.

*Corresponding author. E-mail: huangying/ing@ecust.edu.cn (Yingying Huang); ruoyang.chen@ecust.edu.cn (Ruoyang Chen); shengshiqi@ecust.edu.cn (Shiqi Sheng)

Table S1. Fractional coordinates of the TiO_2 _brookite-*Pbca* structure with orthorhombic lattice (space group: *Pbca*; lattice constants: a = 5.436 Å, b = 2.669 Å, c = 2.669 Å) at P = 1000 GPa.

Atom	X	Y	Z	Occupancy
0	0.37463	0.50095	0.74083	1.0
Н	0.02268	0.29685	0.69590	1.0
Н	0.27737	0.44203	0.43927	1.0

Table S2. Fractional coordinates of the NaO₂-*Pa*3 structure with cubic lattice (space group: *Pa*3; lattice constants: a = b = c = 2.451 Å) at pressure of 2000 GPa.

Atom	X	Y	Z	Occupancy
0	0.0	0.0	0.0	1.0
Н	0.36404	0.36404	0.36404	1.0

Table S3. Band gap (in eV) based on PBE functionals for Ag_2O-Pn^3m , TiO_2 _brookite-*Pbca* and NaO₂-*Pa*3 phases. For the NaO₂-*Pa*3 structure, the band gap calculated using HSE06 hybrid functional is also provided in parentheses.

Pressure	Band gan (eV)
(GPa)	

	Ag_2O-Pn^3m	TiO ₂ _brookite- <i>Pbca</i>	NaO ₂ -Pa3
500	9.4122		
1000	8.1659	4.9993	1.2502 (2.6275)
1500	7.1088	2.8780	0.7760 (2.0816)
2000	6.1535	1.5859	0.3901 (1.6153)
2500	5.2825	0.8891	0.0919 (1.2844)
3000			0 (1.0285)
4000			0 (0.6883)
5000			0 (0.4991)
6000			0 (0.2895)
7000			0 (0.2337)

Figure S1. Crystal structures. (a) TiO_2 _brookite-*Pbca* structure at pressure of 1000 GPa in this work. (b) *Pbca* phase at pressure of 1000 GPa from Ref. [1]. The large red spheres and small white spheres denote the O and H atoms, respectively.

Figure S2. Relative enthalpy per water molecule versus pressure for ice phases, with Ag_2O-Pn^3m (ice X) as a reference. The high-pressure phases of I^4 2d, $P2_1$, C2, $P3_121$, Pcca and Pbca are from Ref. [1] and Ref. [2].

Figure S3. Relative enthalpy of ice phase at the pressure around 2000 to 3000 GPa, with TiO_2 _brookite-*Pbca* as a reference. (a) Old relative enthalpy per water molecule versus pressure for ice phases based on soft PAW pseudopotentials. (b) New relative enthalpy per water molecule versus pressure for ice phases with hard PAW pseudopotentials and zero-point energy.

Figure S4. Phonon spectrum for (a) TiO_2 _brookite-*Pbca* at P = 300 GPa and (b) NaO_2 -*Pa3* at P = 2200 GPa.

References

- 1. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang and Y. Ma, Nat. Commun. 2011, 2, 563.
- 2. C. J. Pickard, M. Martinez-Canales and R. J. Needs, Phys. Rev. Lett. 2013, 110, 245701.
- 3. B. Militzer and H. F. Wilson, Phys. Rev. Lett. 2010, 105, 195701.