Endogenous Oxygen Self-Supplied Nanoplatform with GSH-Depleted and NIR-II Triggered Electron-hole Separation for Enhance Photocatalytic Anti-tumor Therapy

Yao Huang^{a,b,†}, Hanlin Wei^{b,†}, Hui Feng^d, Fengyu Tian^{b,*}, Qi Zheng^{c,*}, Zhiming Deng^{b,*}

^aSchool of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China.

^bState Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

^cKey Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.

^dChangsha Environmental Protection College, Hunan Province, Changsha 410082, China.

[†]These authors contributed equally.

*Correspondence: <u>zhimingdeng@hnu.edu.cn</u> (Z.M.), <u>zhengqi@hnu.edu.cn</u> (Q.Z.), <u>fengyutian@hnu.edu.cn</u> (F.Y.)

Materials and Methods

Copper chloride (CuCl₂), sodium sulphide (Na₂S), Polyvinylpyrrolidone (PVP-K30), Sodium hydroxide (NaOH), hydrazine anhydrous solution (N₂H₄:H₂O), glucose, acetic acid, hydrogen tetrachloroaurate (III) (HAuCl₄:3H₂O), Sodium borohydride (NaBH₄) was purchased from from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). 5, 5 -dithiobis (2-nitrobenzoic acid) (DTNB), glutathione (GSH), 2',7'-dichlorodihydrofluorescein (DCFH-DA) and 1,3-diphenylisobenzofuran (DPBF) were purchased from Sinopharm Chemical Reagent Co., Ltd. All compounds were utilized just as they were supplied, with no additional purification.

Characterization

The crystallographic phase structure was examined via powder X-ray diffraction (XRD, Rigaku D/max 2500 system operating at 40 kV and 250 mA). Transmission electron microscopy was performed by JEM-2100F (JEM-2010, JEOL, Japan) with an accelerating voltage of 200 kV. The UV-Vis adsorption spectral values were measured on a U-3310 spectrophotometer (Hitachi). The surface chemical composition was evaluated by X-ray photoelectron spectrometer (XPS, ESCALab 250Xi, Thermo Fisher Scienti c, USA).

Synthesis of Cu7S4 nanospheres

The Cu7S4 nanospheres were synthesized according to previously reported method with minor modification¹. Briefly, 100 μ L CuCl₂ solution (0.5 M) was added

to 25 mL deionized water containing 0.24 g PVP-K30 under magnetic stirring at room temperature. Then, 25 mL NaOH solution (pH=9.0) was added, followed by addition of 6.4 μ L N₂H₄:H₂O (50 %) to form a bright-yellow suspension of Cu₂O spheres. After 5 min, 200 μ L Na₂S aqueous solution (320 mg mL⁻¹) was added to the suspension. The solution was heated for 2 h at 60 °C. Finally, Cu₇S₄ nanospheres were centrifuged at 10000 rpm for 6 min, and washed three times with deionized water and ethanol. Then, the Cu₇S₄ nanospheres were dispersed in 20 mL ethanol.

Synthesis of hollow Cu₇S₄@Au nanospheres

The Cu₇S₄@Au nanospheres were one-step synthesized according to previously reported literature with some modifications. Briefly, 1.0 mL Cu₇S₄ suspension above prepared was dispersed in 1.2 mL ethanol, followed by the addition of 0.01 g PVP-K30. After stirring for 30 min, HAuCl₄:3H₂O aqueous solution with different volume (1.6, 3.2, 4.8, 6.4 and 9.6 mL) (0.3 mM) was added and the mixture was stirred for 10 min. Afterwards, 0.5 mL NaBH₄ (3 mM) was added and the mixture was stirred for another 30 min. The products were collected by centrifugation at 10000 rpm for 5 min and washed three times with ethanol. Then, the Cu₇S₄@Au nanospheres were dispersed in water.

Synthesis of hollow Cu₇S₄@Au@MnO₂

1 mL Cu₇S₄@Au nano-material was mixed with 20 mg KMnO₄ in 20 mL water and stirred for 10 min. After the solution was changed to brown, the obtained Cu₇S₄@Au@MnO₂ nanocatalysts were collected by centrifugation and washed with water several times. The contents of Cu and Au in Cu₇S₄@Au@MnO₂ are determined by ICP.

Table 1. The weight ratio between Cu, Au and Mn in Cu₇S₄@Au@MnO₂

Cu	Au	Mn
1	0.27	0.09

Tumor animal models

The 8×10^6 4T1 cells were subcutaneously injected into the BALB/c mice to establish the 4T1 tumor-bearing mice models. The 4T1 tumor-bearing mice were used for NIR-II light triggered on-demand enhanced photocatalytic therapy.

In vitro cytotoxicity and NIR-II triggered on-demand enhanced photocatalytic therapy

In vitro cell viability was evaluated by using a 3-(4,5-dimethylthiazol-2-yl)-2-5diphenyl-tetrazolium bromide (MTT) proliferation assay method. The 4T1 cells were first cultured in a 96-well microplate and kept at 37 °C under 5% CO₂ incubation 3 h. For cell toxicity tests, the cells were treated with different concentrations of different nano-drugs for 12 h at 37 °C. Finally, the cell viabilities were tested by using MTT method. For *in vitro* therapy of cancer cells, the cells were divided into four groups:(I) Control, (II) $Cu_7S_4@Au+NIR-II$, (III) $Cu_7S_4@Au@MnO_2$, (IV) $Cu_7S_4@Au@MnO_2+NIR-II$. The cells were then cultured at 37 °C for 6 h. Finally, the cell viabilities were tested referring to the MTT method.

In vitro oxidative stress detection

The 4T1 cells were first treated with (I) Control, (II) $Cu_7S_4@Au+NIR-II$, (III) $Cu_7S_4@Au@MnO_2$, (IV) $Cu_7S_4@Au@MnO_2+NIR-II$ incubated for 12 h. Next, the 4T1 cells were stained with DCFH-DA for 30 min. The fluorescence images were then acquired by using a fluorescence microscope.

Test of GSH depletion

The consumption of GSH was monitored by UV-vis spectroscopy. The $Cu_7S_4@Au@MnO_2$ (2 mL, 5 μ M) was mixed with (40 μ L) GSH (1 mM). At different time points, 40 μ L DTNB (10 mg/mL) was added. The absorbance spectrum of the supernatant was measured by UV-vis spectroscopy.

Photocurrent test

The photocurrent properties of the samples were tested using a three-electrode method. The platinum electrode was used as the counter electrode, the Ag/AgCl electrode was used as the reference electrode, and the working electrode was made of a titanium plate encapsulated with a silica gel. The electrolyte solution was Na₂SO₄ (0.5 M) solution. The samples were tested using a CHI-660 electrochemical workstation, and the results were measured under 1064 nm laser irradiation. The linear sweep voltammetry scan rate is 10 mV s⁻¹.

Tumor biopsies

For hematoxylin and eosin (H&E) and Terminal deoxynucleotidyl transferase

dUTP nick end labeling (TUNEL) staining, the tumors of 4T1 tumor-bearing mice and bilateral 4T1 tumor-bearing mice after different treatments were dissected. And then the tumors were stained with H&E and TUNEL for histological test.

Figure S1. The high-resolution images of $Cu_7S_4@Au@MnO_2$.

Figure S2. VB-XPS spectra, UV-vis spectra and Plot of $(\alpha hv)^2$ versus photon energy

(hv) of Cu₇S₄@Au (HAuCl₄·3H₂O aqueous solution with 20, 40 and 60 μ L)

nanocatalyst.

Figure S3. The oxygen release ability of $Cu_7S_4@Au@MnO_2$ nanomaterials.

Figure S4. Content of Mn in 4T1 cells after coincubating with $Cu_7S_4@Au@MnO_2$

nanomaterials for 4 h and 8 h, respectively.

Figure S5. Images of several organs stained with H&E. Scale bar : 200 $\mu m.$

 Deng, X. R.; Li, K.; Cai, X. C.;Liu, B.; Wei, Y.; Deng, K. R.; Xie, Z. X.; Wu, Z.
J.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. A Hollow-Structured Cu7S4@Cu₂S@Au Nanohybrid: Synergistically Enhanced Photothermal Efficiency and Photoswitchable Targeting Effect for Cancer Theranostics, Advanced Materials, 20178, 29, 1701266.