Supplementary Information

Effect of Ion to Ligand Ratio on the Aqueous to Organic Relative Solubility of a Lanthanide-Ligand Complex

Thomas J. Summers,^{1,#} Jesus Diaz Sanchez,¹ David C. Cantu^{1,*}

¹Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, NV, USA

*Corresponding author: dcantu@unr.edu *Present address: Los Alamos National Laboratory, Los Alamos, NM, USA

Exchanged Molecule	Water Molecule Count	Organic Molecule Count	Additional Components	Equilibrated Box Dimensions (nm)
Ethylbonzono	3500	500 octanol		$4.17752 \times 4.17752 \times 13.61871$
Euryibenzene	3500	500 hexane		$4.07038 \times 4.07038 \times 13.02523$
Formonido	3500	500 octanol		$4.17803 \times 4.17803 \times 13.62040$
Formannue	3500	500 hexane		$4.07259 \times 4.07259 \times 13.03228$
Acatamituila	3500	500 octanol		4.17581 × 4.17581 × 13.61316
Acetomitme	3500	500 hexane		$4.08276 \times 4.08276 \times 13.06482$
C 1 ³⁺	3500	500 octanol	3 Cl-	4.17535 × 4.17535 × 13.61165
Gd	3500	500 hexane	3 Cl-	$4.44776 \times 4.44776 \times 10.94147$
LIDEID	4000	500 octanol	$1 \mathrm{Na^{+}}$	4.25623 × 4.25623 × 14.00299
HDEHP	4000	500 hexane	$1 \mathrm{Na^{+}}$	4.13736 × 4.13736 × 13.61191
	4000	500 octanol	2 Cl-	4.24756 × 4.24756 × 13.97450
Ga(HDEHP)	4000	500 hexane	2 Cl-	4.14806 × 4.14806 × 13.64711
	4850	575 octanol	1 Cl-	$4.39440 \times 4.29440 \times 15.38038$
Gu(IDEHP)2	4850	775 hexane	1 Cl-	4.50606 × 4.50606 × 15.77123
C 1(IIDEIID)	4850	575 octanol		4.40599 × 4.40599 × 15.42095
Ga(HDEHP)3	4850	775 hexane		4.50933 × 4.50933 × 15.78266

Table S1. Details on model construction.

DEHP⁻ gromacs topology file appears at the end of the SI

Figure S1. Plots of the potential energy (PE) of the biphasic system equilibrations of water and either octanol (left column) or hexane (right column) for the simulations of (A) ethylbenzene, (B) formamide, (C) acetonitrile, (D) Gd³⁺ ion, (E) DEHP⁻ ion, (F) Gd-DEHP 1:1, (G) Gd-DEHP 1:2, and (H) Gd-DEHP 1:3.

Figure S2. Plots of the surface tension of the biphasic system equilibrations of water and either octanol (left column) or hexane (right column) for the simulations of (A) ethylbenzene, (B) formamide, (C) acetonitrile, (D) Gd³⁺ ion, (E) DEHP⁻ ion, (F) Gd-DEHP 1:1, (G) Gd-DEHP 1:2, and (H) Gd-DEHP 1:3.

Figure S3. Umbrella sampling windows (Y-axis is sampling count) as the molecules transfer from water to either octanol (left column) or hexane (right column) for (A) ethylbenzene, (B) formamide, (C) acetonitrile, (D) Gd³⁺ ion, (E) DEHP⁻ ion, (F) Gd-DEHP 1:1, (G) Gd-DEHP 1:2, and (H) Gd-DEHP 1:3.

Figure S4. The potential of mean force as an ethylbenzene molecule transfers from bulk water into (A) octanol or (B) hexane. Background coloring indicates the transition from contact with bulk water (blue) to a mixture (light orange) and to bulk organic (dark orange). Dotted lines indicate statistical upper and lower bounds of the PMF.

Figure S5. The potential of mean force as a formamide molecule transfers from bulk water into (A) octanol or (B) hexane. Background coloring is same as in Figure S1. Dotted lines indicate statistical upper and lower bounds of the PMF.

Figure S6. The potential of mean force as an acetonitrile molecule transfers from bulk water into (A) octanol or (B) hexane. Background coloring is same as in Figure S1. Dotted lines indicate statistical upper and lower bounds of the PMF.

Supplementary information on the unbound Gd³⁺ ion simulations

As the Gd³⁺ ion enters octanol (Figure S7A), the free energy rapidly increases monotonically with no plateauing observed over the length of the simulation. The absence of a plateau in the bulk octanol arises from the limited size of the simulation box and due to the formation of a water finger as the Gd³⁺ hydration complex brings along additional water molecules with it into the organic phase (Figure S7C). As the ion progressed deeper into the bulk octanol, the water finger continued extending and remained intact over the distance covered in this simulation. A water finger also formed when the ion enters the bulk hexane. However, as hexane lacks the hydrophilic head groups of octanol, the volume of the water entering the bulk hexane layer is much greater and thermodynamically more unfavorable (Figure S7B). The observation of water finger formations follows trends seen in previous studies on ion transfer from water into an immiscible liquid.^{*}

Figure S7. (A, B) Potential of mean force as a Gd^{3+} ion transfers from aqueous to either octanol or hexane layers. Dotted lines indicate statistical upper and lower bounds of the PMF. (C) Water tunnel formed as Gd^{3+} enters bulk octanol. (D) Water tunnel formed as Gd^{3+} enters bulk hexane. Coloring is same as Figure 1 with Gd^{3+} ion shown as a green sphere.

^{*} (1) Ilan Benjamin, *Science*, 1993, **261**, 1558–1560. (2) A. Morita, A. Koizumi and T. Hirano, *J. Chem. Phys.*, 2021, **154**, 080901. (3) N. Kikkawa, L. Wang and A. Morita, *J. Am. Chem. Soc.*, 2015, **137**, 8022–8025. (4) J. J. Karnes and I. Benjamin, *J. Chem. Phys.*, 2016, **145**, 014701.

Supplementary information on the unrestrained DEHP⁻ ion simulations

As additional verification that the DEHP⁻ molecule does readily incorporate into the waterorganic interfaces, we conducted additional simulations following the same methodology where an equilibrated system containing the DEHP⁻ molecule positioned within either bulk aqueous or bulk organic layers was simulated for 25ns without any constraints. While the DEHP⁻ molecule readily integrated into the interfacial layer when its starting position was within bulk water or within bulk hexane, it was not able to break past the ordered octanol tails at the octanol-water inface when it was within bulk octanol and so it remained in the octanol layer. This octanolwater simulation was extended to a total time of 200ns without and change; we anticipate that observation of this event without direction would require additional simulation time, but this is beyond the intended purpose of these simulations. The results of the simulations can be quantified by the radial distribution of the DEHP⁻ molecule to nearby solvent molecules (Figure S8). The graphs illustrate the frequent contact between ligand to both water and hexane in the water-hexane simulations as it resides at the interface (Figure S8A) and water and octanol when the ligand begins within bulk water (Figure S8B, right), but there is only frequent contact with octanol molecules when the ligand is initially positioned in the bulk octanol layer (Figure S8B, left).

Figure S8. Radial distribution functions of the DEHP⁻ molecule to nearby water (blue) or organic molecules (orange) for (A) the hexane-water and (B) octanol-water systems when the DEHP⁻ molecule begins in bulk organic (left) or aqueous (right) phases.

Figure S9. Plots of Gd-O radial distribution functions and coordination numbers (CN) from the umbrella simulations of the transfer of free Gd ion (A) and Gd-DEHP⁻ in 1:1 (B), 1:2 (C) and 1:3 (D) ratios from water to octanol (left columns) or hexane (right)

Figure S10. Radial distribution functions and coordination numbers (CN) for the counterions to the center of mass of water (blue) and organic (orange) molecules from the umbrella simulations of the transfer of free Gd ion (A), DEHP⁻ ion (B), and Gd-DEHP⁻ in 1:1 (C), and 1:2 (D) ratios with octanol (left columns) or hexane (right) as the organic solvent.

DEHP structure in GROMACS format

Green Red Orange Magenta Azure Cyan Skyblue

55					
1HDE	01	1	0.037	0.206	-0.159
1HDE	Ρ1	2	-0.071	0.195	-0.264
1HDE	02	3	-0.182	0.093	-0.250
1HDE	03	4	-0.002	0.181	-0.414
1HDE	04	5	-0.132	0.346	-0.283
1HDE	C1	6	0.054	0.054	-0.451
1HDE	H1	7	0.147	0.038	-0.395
1HDE	H2	8	-0.015	-0.026	-0.423
1HDE	C2	9	-0.244	0.366	-0.372
1HDF	H3	10	-0.218	0.327	-0.471
1HDF	H4	11	-0.330	0.309	-0.336
1HDE	C3	12	-0 278	0.505	-0 377
	C/	13	-0 159	0.515	-0 122
	C5	1/	-0.155	0.004	-0.422
		14	0.411	0.333	0.434
		12	-0.190	0.705	0.226
		10	-0.091	0.013	-0.550
THDE	6	1/	-0.0/6	0.558	-0.542
THDE	H/	18	-0.437	0.645	-0.443
1HDE	H8	19	-0.490	0.483	-0.402
1HDE	C7	20	-0.415	0.502	-0.603
1HDE	H9	21	-0.139	0.547	-0.631
1HDE	H10	22	-0.032	0.460	-0.522
1HDE	C8	23	0.038	0.656	-0.575
1HDE	H11	24	-0.517	0.516	-0.642
1HDE	H12	25	-0.349	0.565	-0.663
1HDE	H13	26	-0.388	0.398	-0.621
1HDE	H14	27	0.101	0.669	-0.485
1HDE	H15	28	-0.004	0.755	-0.597
1HDE	C9	29	0.126	0.610	-0.692
1HDE	H16	30	0.067	0.600	-0.784
1HDE	H17	31	0.206	0.682	-0.712
1HDE	H18	32	0.172	0.513	-0.671
1HDE	C10	33	0.083	0.053	-0.601
1HDE	C11	34	0.168	-0.070	-0.641
1HDE	C12	35	-0.043	0.076	-0.688
1HDE	H19	36	0.199	-0.057	-0.746
1HDE	H20	37	0.261	-0.067	-0.582
1HDE	C13	38	0.106	-0.210	-0.625
1HDE	H21	39	-0.017	0.054	-0.793
1HDE	H22	40	-0.066	0.184	-0.686
1HDF	C14	41	-0.171	0.000	-0.650
1HDF	H23	42	0.020	-0.221	-0.693
1HDE	H24	43	0.067	-0.223	-0.524
1HDE	C15	44	0.007	-0 322	-0 655
	H25	45	-0 252	0.025	-0.000
	426	45	-0.252	-0.1025	-0.720
	1120 1127	40	-0.138	0.100	-0.052
	п27 Цро	47	-0.205 0.202	-0 212	-0.549
	1120	40	0.292	0.313	0.307
	Π29 C1C	49	0.240	-0.309	-0.757
	CTP	50	0.146	-0.403	-0.042
THDE	H30	51	0.062	-0.4/6	-0./11
THDE	H31	52	0.220	-0.540	-0.664
THDE	H32	53	0.108	-0.480	-0.541
1HDE	H33	54	0.148	0.140	-0.620
1HDE	H34	55	-0.300	0.544	-0.273
0.00000	0.00	9000	0.0000	0	

DEHP parameters							
HDE			3				
[atoms]	- 441	1		01	1	0.067	15 000400
	5_441	1	HDE	01	1	-0.86/	15.999400
2 op1:	5_440	1	HDE	P1 02	2	1./108	30.9/3/60
5 OPI:	5_441 - 442	1		02	2	-0.00/	15.999400
4 OP1	5_442	1	HDE	03	4	-0.8043	15.999400
5 OPI	5_442	1		04	5	-0.8045	12.011000
6 OPI	5_445 c_444	1			0	0.0540	1 009000
7 Opi	5_444 c_444	1		п <u>т</u> пр	, 0	0.1025	1.000000
8 OP1	5_444 c //2	1		()	0	0.1025	12 011000
10 opt	s_++J c_///	1	HDE	С2 H3	10	0.0040	1 008000
10 op1	s 444	1	HDF	H4	11	0.1623	1,008000
12 op1	s_137	1	HDF	(3	12	-0.1823	12,011000
13 op1	s_136	1	HDF	C4	13	-0.312	12.011000
14 opl	s 136	1	HDE	C5	14	-0.312	12.011000
15 opl	s 140	1	HDE	H5	15	0.1551	1.008000
16 opl	s 140	1	HDE	H6	16	0.1551	1.008000
17 opl	s 136	1	HDE	C6	17	-0.312	12.011000
18 opl	s 140	1	HDE	H7	18	0.1551	1.008000
19 opl:	s_140	1	HDE	H8	19	0.1551	1.008000
20 opl:	s_135	1	HDE	C7	20	-0.4965	12.011000
21 opl:	_ s_140	1	HDE	H9	21	0.1551	1.008000
22 op1	s_140	1	HDE	H10	22	0.1551	1.008000
23 opl:	s_136	1	HDE	C8	23	-0.312	12.011000
24 opl:	s_140	1	HDE	H11	24	0.1591	1.008000
25 opl:	s_140	1	HDE	H12	25	0.1591	1.008000
26 opl:	s_140	1	HDE	H13	26	0.1591	1.008000
27 opl:	s_140	1	HDE	H14	27	0.1551	1.008000
28 opl:	s_140	1	HDE	H15	28	0.1551	1.008000
29 opl:	s_135	1	HDE	C9	29	-0.4965	12.011000
30 opl:	s_140	1	HDE	H16	30	0.1591	1.008000
31 opl:	s_140	1	HDE	H17	31	0.1591	1.008000
32 opl:	s_140	1	HDE	H18	32	0.1591	1.008000
33 opl:	s_137	1	HDE	C10	33	-0.1823	12.011000
34 opl	s_136	1	HDE	C11	34	-0.312	12.011000
35 op1:	s_136	1	HDE	C12	35	-0.312	12.011000
36 op1:	s_140	1	HDE	H19	36	0.1551	1.008000
37 op1	s_140	1	HDE	H20	37	0.1551	1.008000
38 OP1	S_136	1	HDE	C13	38	-0.312	12.011000
39 Op1	5_140	1	HDE	HZI	39	0.1551	1.008000
40 OP1	S_140	1	HDE	H22	40	0.1551	1.008000
41 OP1:	5_135 c 140	1		U14 U22	41	-0.4905	12.011000
42 OP1:	5_140 c 140	1		п <i>25</i> Ц24	42	0.1551	1.008000
43 OPI	5_140 c 126	1		ПZ4 С15	45	-0 312	12 011000
44 OPI	5_1J0 c 140	1		L12	44	0.JIZ	1 008000
45 OP1	5_140 c 1/0	1		H26	45	0.1591	1 008000
40 0p1	s_140	1	HDE	H27	40	0.1591	1 008000
47 OP1	s_140	1	HDE	H28	48	0.1551	1 008000
40 op1	s_140	1	HDF	H29	40	0.1551	1,008000
50 onl	s 135	1	HDF	C16	50	-0.4965	12.011000
50 Op1	s 140	1	HDF	H30	51	0.1591	1.008000
52 op1	s 140	1	HDF	H31	52	0.1591	1.008000
53 onl	s 140	1	HDE	H32	53	0.1591	1.008000
54 onl	s 140	1	HDE	H33	54	0.1646	1.008000
55 op1	s 140	1	HDE	H34	55	0.1646	1.008000
[bonds]		-					
1 2	1						

9 9	10 11	1 1		
9	12	1		
12	13	1		
12 12	14 55	1		
13	15	1		
13	16	1		
13 14	17 19	1		
14	18	1		
14	20	1		
17	21	1		
17	22	1		
20	24	1		
20	25	1		
20	26 27	1		
23	28	1		
23	29	1		
29 29	30 31	1		
29	32	1		
33	34	1		
33	35 54	1		
34	36	1		
34	37	1		
34 35	38 39	1		
35	40	1		
35	41	1		
38 38	42 43	1		
38	44	1		
41	45	1		
41 41	46 47	1		
44	48	1		
44	49	1		
44 50	50 51	1		
50	52	1		
50	, 53	1		
[ang.	Les J	2	з	
	1	2	4	
	1	2	5	
	3 3	2	4	
	4	2	5	
	2	4	6	
	2	5	9	
	4	6	8	
	4	6	33	
	7	6 6	8 33	
	8	6	33	
	5	9	10	
	5	9 9	11 12	
	10	9	11	
	10	9	12	
	9 11	9 12	12 13	
	9	12	14	
	9	12	55	

13	12	14	1
13	12	55	1
14	12	55	1
12	13	15	1
12	13	16	1
12	12	17	1
1	10	10	1
15	13	10	1
15	13	17	1
16	13	17	1
12	14	18	1
12	14	19	1
12	14	20	1
18	14	19	1
18	14	20	1
10	1/	20	1
12	17	20	1
12	17	21	1
13	17	22	1
13	17	23	1
21	17	22	1
21	17	23	1
22	17	23	1
14	20	24	1
14	20	25	1
14	20	26	1
24	20	25	1
24	20	25	1
24	20	20	1
25	20	26	1
1/	23	27	1
17	23	28	1
17	23	29	1
27	23	28	1
27	23	29	1
28	23	29	1
23	29	30	1
23	29	31	1
23	29	32	1
20	20	21	1
20	29	22	1
30	29	32	1
31	29	32	1
6	33	34	1
6	33	35	1
6	33	54	1
34	33	35	1
34	33	54	1
35	33	54	1
33	34	36	1
33	34	37	1
22	2/	20	1
22	24	50	1
20	24	20	1
36	34	38	1
37	34	38	1
33	35	39	1
33	35	40	1
33	35	41	1
39	35	40	1
39	35	41	1
40	35	41	1
3/1	38	12	1
24	20	42	1
54 24	20	45	1
54	38	44	T
42	38	43	1
42	38	44	1
43	38	44	1
35	41	45	1
35	41	46	1
35	41	47	1
45	41	46	1
45	41	47	1
16	/1		1
40	41	4/	т

	38	44	48	1	
	38	44	49	1	
	38	44	50	1	
	48	44	49	1	
	48	44	50	1	
	49	44	50	1	
	44	50	51	1	
	44 11	50	52	1	
	51	50	52	1	
	51	50	53	1	
	52	50	53	1	
[dihedral	_s]			
	1	2	4	6	3
	3	2	4	6	3
	5	2	4	6	3
	3	2	5	9	ר ד
	4	2	5	9	3
	2	4	6	7	3
	2	4	6	8	3
	2	4	6	33	3
	2	5	9	10	3
	2	5	9	11	3
	2	5	22	24	3
	4	6	33	35	ר ד
	4	6	33	54	3
	7	6	33	34	3
	7	6	33	35	3
	7	6	33	54	3
	8	6	33	34	3
	8	6	33	35	3
	8 5	6 Q	33 12	54 13	3
	5	9	12	14	3
	5	9	12	55	3
	10	9	12	13	3
	10	9	12	14	3
	10	9	12	55	3
	11	9	12	13	3
	11	9	12	14 55	3
	9	12	13	15	כ ר
	9	12	13	16	3
	9	12	13	17	3
	14	12	13	15	3
	14	12	13	16	3
	14	12	13	17	3
	55	12	13	15	3
	55	12	13	10 17	3
	9	12	14	18	3
	9	12	14	19	3
	9	12	14	20	3
	13	12	14	18	3
	13	12	14	19	3
	13	12	14	20	3
	55	12	14 17	18 10	ک د
	55 55	12 12	14 14	20 19	כ ר
	12	13	17	21	3
	12	13	17	22	3
	12	13	17	23	3
	15	13	17	21	3
	15	13	17	22	3
	15	13	17	23	3
	16	13	17	21	3
	16	13	1/	22	3

16	13	17	23	3
12	14	20	24	3
12	14	20	25	2
18	14	20	20	כ ר
18	14	20	24	3
18	14	20	26	3
19	14	20	24	3
19	14	20	25	3
19	14	20	26	3
13	17	23	27	3
13	17	23	28	3
13	17	23	29	3
21	17	23	27	2
21	17	23	20	כ ר
22	17	23	27	3
22	17	23	28	3
22	17	23	29	3
17	23	29	30	3
17	23	29	31	3
17	23	29	32	3
27	23	29	30	3
27	23	29	31	3
27	23	29	32	2
28	23	29	31	2
28	23	29	32	3
6	33	34	36	3
6	33	34	37	3
6	33	34	38	3
35	33	34	36	3
35	33	34	37	3
35	33	34	38	3
54 E 4	33	34 24	36	ک د
54 57	22	54 34	38	2
6	33	35	39	3
6	33	35	40	3
6	33	35	41	3
34	33	35	39	3
34	33	35	40	3
34	33	35	41	3
54	33	35	39	3
54	33	35	40	3
54 22	33	35	41	2
33	34	38	42	2
33	34	38	44	3
36	34	38	42	3
36	34	38	43	3
36	34	38	44	3
37	34	38	42	3
37	34	38	43	3
37	34	38	44	3
33	35	41 1	45	2
22	35	41	47	כ ר
39	35	41	45	3
39	35	41	46	3
39	35	41	47	3
40	35	41	45	3
40	35	41	46	3
40	35	41	47	3
34	38	44	48	3
34 24	کر مر	44	49 50	ک د
54 42	20 28	44 44	<u></u> 48	כ ר
42	38	44	49	3
-		-	-	-

42 43 43 43 38 38 38 48 49 49 9 9 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	38 38 38 44 44 44 44 44 44 44 44 44 44 44 44 44	44 44 44 50 50 50 50 50 50 50	50 48 49 50 51 52 53 51 52 53 51 52 53
---	--	--	--

14	16
14	17
15	21
15	22
15	23
15	55
10	22
10	21
16	22
16	23
16	55
17	30
17	31
17	32
17	55
18	24
18	25
18	26
18	55
19	24
10	25
10	25
19	20
19	55
20	55
21	27
21	28
21	29
22	27
22	28
22	29
27	30
27	31
27	32
20	30
20	21
20 20	27
20	22
22	42
33	43
33	44
33	45
33	46
33	47
34	39
34	40
34	41
34	48
34	49
34	50
35	36
35	37
35	38
36	12
20	42
30	43
36	44
36	54
37	42
37	43
37	44
37	54
38	51
38	52
38	53
38	54
39	45
39	46
39	47
39	54
40	45
40	46
40	47

54
54
48
49
50
48
49
50
51
52
53
51
52
53