Supporting information to

CO₂ Activation by Copper Oxide Clusters: Size, Composition, and Charge State Dependence

Pavol Mikolaj, Barbara Zamora Yusti, László Nyulászi, Joost M. Bakker, Tibor Hölzl, Sandra M. Lang.

S1 Intensity scaling of calculated spectra

We find that multiplying the intensities of the calculated spectra by the wavelength λ gives a better match between the calculated and experimental spectra, as shown in Figure S1. We speculate that the better match is caused by a wavelength dependent flux. Given that the intracavity laser's spatial mode is quite well-defined, we conclude that the frequency dependence of the photon flux is not due to a changing of the beam size but due to an increase in spectral brightness. The assumed Gaussian laser mode's cross-section is proportional to the wavelength λ and consequentially, because the macropulse energy is relatively constant over a scanned wavelength range, the fluence (energy per unit area) scales with $1/\lambda$, but the photon flux (photons per unit area) does not, because division by the photon energy ($hv=hc/\lambda$) cancels the $1/\lambda$ dependence. Instead, because the laser's spectral bandwidth is proportional to the wavenumber, the flux per unit wavenumber reduces with wavenumber. Therefore, the intensity of all spectra shown in the manuscript and the supporting information were scaled by we scaled by λ .

Figure S1: IR-MPD spectrum (gray) of Cu₂O₄(CO₂)⁻ together with the calculated infrared spectrum (blue) of isomer 2,4,1-a. In the upper panel the intensity of the calculated spectrum was scaled with the I, while in the lower spectrum the intensity was not scaled.

S2 Additional structures and vibrational spectra for Cu₂O₄(CO₂)⁻

Figure S2: IR-MPD spectrum (in gray) of Cu₂O₄(CO₂)⁻ together with calculated vibrational spectra (in blue) of several isomeric structures (relative energies are given in brackets in eV). The experimental spectrum was measured in two independent runs (1800-660 cm⁻¹ and 800-240 cm⁻¹, while the first one was obtained at reduced FELICE fluence). To obtain an intensity match of the peaks in the overlapping spectral region the intensity of the 800-240 cm⁻¹ spectrum was multiplied by a factor 0.6. The intensities of the calculated spectrum were multiplied by the wavelangth. The red dashed peak corresponds to the O-O stretching mode resulting from the scaling with a factor of 0.921. Isomers **2,4,1-e** and **2,4,1-f** are similar to isomer **2,4,1-a** shown in the main text and also exhibit similar vibrational spectra. Isomers **2,4,1-g** and **2,4,1-h** provide an inferior match with the IR-MPD spectra, in particular for band I. Cu, C, and O atoms are depicted as yellow, black, and red spheres, respectively.

isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹	isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹	isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹
2,4,1-a	1676.27	687.87	2,4,1-b	1696.25	530.51	2,4,1-c	1596.18	724.75
	1202.48	179.67		1168.34	32.44		1342.10	202.19
	1151.92	452.85		1161.71	526.74		1056.70	86.96
	998.62	23.30		941.69	78.54		1031.59	484.47
	809.75	15.42		789.49	14.58		795.12	20.17
	761.85	11.08		715.58	52.66		767.47	55.35
	700.16	60.74		672.41	57.36		693.82	10.79
	631.76	2.072		608.97	15.57		639.34	3.09
	518.00	21.84		561.51	55.93		559.19	2.70
	393.28	73.87		392.16	4.55		539.89	2.98
	348.49	2.49		381.88	37.91		426.94	14.80
	341.14	6.15		314.89	8.88		341.33	25.30
	243.19	1.65		246.05	20.16		274.45	10.78
	206.67	3.05		245.42	7.84		236.19	6.97
	178.39	12.48		170.03	3.84		198.50	0.10
	144.59	6.03		156.14	6.13		182.22	6.81
	93.06	0.09		117.63	3.69		158.38	1.41
	80.87	3.52		107.07	0.02		151.99	23.37
	59.12	2.64		91.54	1.51		99.71	0.01
	45.94	0.84		75.14	1.73		72.57	3.92
	28.91	1.75		58.51	0.02		63.44	2.22
2,4,1-d	1625.44	560.76						
	1166.77	227.13						
	1019.43	60.17						
	939.75	305.44						
	805.43	11.27						
	798.76	118.26						
	766.29	0.23						
	697.86	1.66						
	631.85	68.89						
	493.27	15.19						
	475.38	18.11						
	362.09	14.75						
	351.09	7.25						
	243.48	8.34						
	227.19	0.24						
	195.51	11.23						
	150.83	0.48						
	134.57	1.87						
	109.88	19.77						
	94.06	18.0						
	76.39	4.67						

Table 1: Calculated frequencies and (unscaled) intensities of the $Cu_2O_4(CO_2)^-$ isomers shown in Figure 3 of the main text.

S3 Calculated vibrational spectra for $Cu_3O_4(CO_2)^-$ and isolated CO_3^{2-}

Figure S3: DFT calculated harmonic characteristic frequencies of the CO₃ unit in Cu₂O₄(CO₂)⁻ (blue) together with calculated vibrational spectra of an isolated carbonate ion CO_3^{-2} (black). Cu, C, and O atoms are depicted as yellow, black, and red spheres, respectively.

S4 Additional structures and vibrational spectra for Cu₃O₄(CO₂)⁻

Figure S4: IR-MPD spectrum (in gray) of $Cu_3O_4(CO_2)^-$ together with calculated vibrational spectra (in blue) of several isomeric structures (relative energies are given in brackets in eV). The experimental spectrum was measured in two independent runs (1800-660 cm⁻¹ and 800-240 cm⁻¹, while the first one was obtained at reduced FELICE fluence). To obtain an intensity match of the peaks in the overlapping spectral region the intensity of the 800-240 cm⁻¹ spectrum was multiplied by a factor 0.6). The intensities of the calculated spectrum were multiplied by the wavelength. Isomer **3,4,1-h** is similar to isomers **3,4,1-a,b** of the main text; isomer **3,4,1-g,i** do not contain an O_2 unit. While the co-existence of some of these isomers in the molecular beam cannot be completely excluded, none of them provide a superior fit as those discussed in the main text. Cu, C, and O atoms are depicted as yellow, black, and red spheres, respectively.

isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹	isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹	isomer	frequency / cm ⁻¹	intensity / km mol ⁻¹
3,4,1-a	1725.88	710.69	3,4,1-b	1722.10	672.85	3,4,1-c	1593.13	201.58
	1197.75	212.25		1181.46	124.12		1224.81	99.46
	958.52	195.66		935.03	470.77		1012.25	5.54
	917.83	116.73		902.25	66.43		841.20	198.01
	813.99	14.93		805.23	15.82		805.28	13.41
	725.56	50.24		701.57	16.50		758.57	8.38
	635.49	35.97		657.36	41.28		676.79	30.50
	626.25	60.69		636.32	47.71		657.98	33.89
	620.99	1.60		585.07	13.38		593.46	89.89
	538.71	20.61		517.48	26.34		512.31	16.72
	478.16	7.95		444.55	29.80		433.96	8.93
	413.92	15.32		391.18	14.39		405.68	4.61
	342.97	2.21		303.53	9.20		339.06	3.17
	282.78	5.12		287.98	2.25		277.16	8.11
	234.06	0.68		255.12	0.49		242.08	11.83
	211.48	5.54		239.16	4.64		219.76	13.54
	199.46	10.65		203.40	8.12		199.12	3.96
	184.47	3.63		180.80	7.29		184.70	9.19
	160.83	5.65		148.66	4.97		153.34	8.30
	124.31	2.77		138.60	0.68		127.24	3.23
	118.21	3.70		129.99	1.91		108.63	1.40
	96.16	3.48		109.82	2.19		94.32	2.05
	78.17	2.15		87.11	0.67		75.95	0.14
	59.30	2.87		43.61	6.37		60.93	4.02
3,4,1-d	1738.88	928.05	3,4,1-е	1573.53	208.95	3,4,1-f	1430.85	372.17
	1249.05	128.14		1171.73	200.42		1333.36	259.36
	924.27	114.39		1126.37	1160.57		1015.8	12.54
	811.86	2.07		960.05	39.25		877.13	112.31
	774.08	18.59		801.45	10.88		830.79	57.24
	718.98	13.35		737.08	6.16		688.67	26.20
	663.73	38.71		673.57	31.79		637.41	67.74
	611.02	4.19		637.37	2.54		622.27	3.08
	588.40	44.94		555.36	61.84		584.91	53.24
	578.23	26.88		488.72	5.47		511.41	5.28
	495.94	10.66		390.70	23.91		443.32	5.03
	447.18	9.33		379.85	13.06		397.64	1.42
	419.40	10.57		321.81	19.49		357.61	22.24
	321.05	10.88		281.06	2.85		286.46	2.56
	263.14	3.80		200.53	45.44		216.90	6.65
	235.79	21.15		176.55	6.65		190.17	14.44
	216.95	4.83		165.53	7.61		167.56	13.12
	186.85	5.87		147.00	2.98		152.24	4.82
	166.93	1.25		145.47	9.91		113.92	6.97
	158.11	2.20		93.87	0.46		92.35	2.46
	130.60	7.53		78.02	18.46		86.55	4.32
	108.05	4.56		54.61	1.98		79.37	4.20
	78.21	0.31		48.58	3.71		73.65	1.42
	62.22	1.91		31.67	4.06		46.23	1.36

Table 2: Calculated frequencies and (unscaled) intensities of the $Cu_3O_4(CO_2)^-$ isomers shown in Figure 4 of the main text.

S5 Structures and relative energies of anionic $Cu_2O_4^-$ and $Cu_3O_4^-$ clusters

Figure S5: Natural atomic charges (e), C-O and O-Cu bond lengths (Å) on the carbonates, and O-C-O angle for the (A) **2,4,1-a** isomer of $Cu_2O_4(CO_2)^-$ and the **3,4,1-a** isomer of $Cu_3O_4(CO_2)^-$ (B) as well as their respective bare clusters (top). Cu, C, and O atoms are depicted as yellow, black, and red spheres, respectively.

S6 XYZ coordinates

Cu₂O₄⁻

Cu₃O₄⁻

2,4-1	3,4-1
Cu 1.777073464 0.062893086 0.001998914 Cu -1.037518197 0.151676540 -0.008304471 O 3.154177805 -0.949323325 0.006198118 O 0.419718595 1.158914112 0.002574133 O -3.681699504 -0.119558065 0.025705414 O -2.573084741 -0.867847615 -0.011620022	Cu0.6963040039-1.28454688630.1349027997Cu-1.6354260762-0.32862742010.0108704248Cu0.30683769051.2815319510-0.0039280752O2.3396546852-0.42941476470.0651954742O-1.46422939211.4510570802-0.0014679473O2.13022103850.9449038804-0.0164702291O-0.9450975803-1.96928325360.1691095740
SCF energy (Eh) = -3582.036028 Multiplicity = 2	SCF energy (Eh) = -5222.665392 Multiplicity = 3

Cu₂O₄(CO₂)⁻

2,4,1-a	2,4,1-b	2,4,1-c
Cu 2.070549369 0.149988126 0.001840883 Cu -1.019037234 0.405136079 0.028897802 O 0.626741811 1.112102747 0.064315256 O 3.659472803 -0.822528519 0.621077173 O 3.641419373 -0.800282021 -0.709239715 O -2.475716876 -0.257788697 1.065597002 C -3.211992239 -0.431709873 -0.025788207 O -2.505050598 -0.044481774 -1.080640598 O -4.349603824 -0.875564577 -0.053195695 SCF energy (Eh) = -3770,759571 (M=2)	Cu 1.235004827 -0.008461059 -0.000718381 Cu -1.033175076 1.069126945 0.002014875 O 0.615565780 1.720481505 0.004089456 O 3.236534867 -0.251845038 -0.009049471 O 2.610421048 -1.416823645 0.004280466 O -2.623923098 0.053097452 -0.012954265 C -1.978260501 -1.091351295 -0.001207358 O -2.464137518 -2.208644577 0.001790755 O -0.622398551 -0.922666062 0.008048788 SCF energy (Eh) = -3770.745533 (M=2) SCF energy (Eh) = -3770.7385576957 (M=4)	Cu 2.812908679 0.036066516 -0.000449585 Cu -2.044671299 0.050437419 0.002550500 O -0.221923032 0.594111115 -0.015868803 O 1.304681358 -1.085506280 -0.008957150 O 4.267495255 0.992473120 0.013192469 O -3.874400447 -0.075299203 0.011674518 C 0.121268784 -0.667523194 -0.006747627 O -0.908190227 -1.472908008 0.004835744 O -3.443474998 1.234194890 -0.007431877 SCF energy (Eh) = -3770.743935 (M=2) SCF energy (Eh) = -3770.73178035441 (M=4)
2,4,1-d	2,4,1-е	2,4,1-f
Cu -0.217977662 -1.198449658 -0.011845321 Cu -0.210751310 1.198681987 0.012337820 O 1.606292257 -1.151070122 0.017012547 O -2.772034735 0.004250957 0.000620036 O -2.059693950 1.179041049 -0.025517997 O 1.613927775 1.150574716 -0.022147502 C 2.286543745 -0.002371542 -0.000385333 O 3.517063234 -0.006625476 0.003092994 O -2.066319865 -1.175234656 0.025443612 SCF energy (Eh) = -3770,739200 (M=2)	Cu -1.192598656 0.000598902 -0.002387689 Cu 2.306230411 -0.002281762 -0.000440255 O 0.579919294 -0.005627382 -0.002556487 O -2.759572841 -1.079270657 0.007724957 O -2.758757386 1.080191000 -0.006382610 O 4.152039347 0.670754379 0.014256989 C -3.533718416 0.000866600 0.002318047 O -4.754864271 0.001301125 0.004004848 O 4.154609556 -0.661898046 -0.008534937 SCF energy (Eh) = -3770,757954 (M=2)	Cu 1.191544768 0.005480761 0.003237425 Cu -2.312690812 0.007139963 -0.007726376 O -0.588338681 0.021302685 -0.007056229 O 2.780737635 1.080000281 -0.032106405 O 2.767822525 -1.087876212 0.043778127 O -4.156940524 0.044095418 0.671216766 C 3.544087942 -0.008463165 0.000496185 O 4.766399832 -0.015810714 -0.008241670 O -4.163592335 -0.081114209 -0.651690279 SCF energy (Eh) = -3770,750652 (M=4)
2,4,1-g	2,4,1-h	2,4,1-i
Cu 1.147326403 -0.079695991 -0.054783764 Cu -1.118280688 1.240131326 0.138224136 O -0.342763128 -1.266308786 -0.035154671 O 2.590384061 -1.245389187 0.181213128 O 2.997395298 0.046871747 0.062334015 O -2.310094688 -0.102262022 -0.064644935 C -1.659814821 -1.281471946 -0.046150837 O -2.296515275 -2.330022738 -0.042667899 O 0.501164132 1.651636858 -0.368937856 SCF energy (Eh) = -3770,740791 (M=2) SCF energy (Eh) = -3770.73359106221 (M=4)	Cu 1.036859449 0.374002410 0.256104262 Cu -1.339657002 1.024298263 -0.257362404 O 0.026448643 1.929432145 0.366350203 O 3.194491387 -0.916318843 -0.884731701 O 2.764030520 -0.358726997 0.193413024 O -2.185021465 -0.588329582 -0.216033695 C -1.314346250 -1.554065291 0.088474665 O -0.041931124 -1.242362099 0.298421213 O -1.674617141 -2.726985593 0.180785720 SCF energy (Eh) = -3770,729289 (M=2	Cu 1.585099796 -0.023361157 0.001729449 Cu -1.140460376 0.260223833 0.006525892 O 0.057282370 -1.146065861 0.034186314 O 3.385431287 -0.996990162 -0.020924094 O 3.653021152 0.386630009 0.014000515 O 0.398049363 1.473876033 -0.047717345 O -3.071618815 0.968529987 0.029547364 C -3.045774484 -0.312355254 -0.003365813 O -3.749652393 -1.310340766 -0.036494008 SCF energy (Eh)= -3770.67274999 (M=2)

Cu₃O₄(CO₂)⁻

3,4,1-a	3,4,1-b	3,4,1-c
Cu 0.148143263 -1.299935880 -0.181464177 Cu -0.783936637 1.214224254 -0.030091689 Cu 1.781500756 0.679290417 0.048295117 O 2.718578124 -0.881952063 0.356896753 O -2.503709052 0.753634322 0.678841953 O 1.835870805 -1.936925471 0.287641820 O -1.499161093 -0.637187343 -0.701887374 C -2.600971335 -0.412611239 0.114520175 O -3.504627169 -1.221215195 0.197582817 O 0.750587623 2.081381062 -0.313145883 SCF energy (Eh) = -5411.375208 (M=3) SCF energy (Eh) = -5411,353506 (M=1)	Cu 0.090543012 -1.515699033 0.059188937 Cu -1.933282045 -0.114859706 -0.113175265 Cu 0.432781543 0.930654536 0.197190740 O 3.751976304 -0.423391696 -0.348644044 O -2.101546932 1.709462041 -0.072361901 O 1.654141187 -0.582236224 0.508502172 O -1.650382433 -1.862832009 -0.174557545 C 2.681516307 0.106023766 -0.124764806 O 2.308685964 1.327370726 -0.358268674 O -0.862915419 2.289262071 0.019787600 SCF energy (Eh) = -5411.366843 (M=3) SCF energy (Eh) = -5411,353208(M=1)	Cu 1.911920630 0.381037866 0.102697874 Cu -0.497046324 1.341797209 -0.044477185 Cu -0.092166988 -1.205443399 -0.154362344 O 2.435175584 -1.349567424 0.618536733 O -1.846004212 -1.251888650 0.276075559 O 1.696338489 -1.459664400 -0.640345354 O 1.179372019 1.982212742 -0.047364115 C -2.734968864 -0.279379410 0.111480416 O -2.270722079 0.924165895 -0.144524241 O -3.937747179 -0.511268431 0.202524602 SCF energy (Eh) = -5411.365077 (M=3) SCF energy (Eh) = -5411,358944 (M=1)

5)-1)- u	3,4,1-е	3,4,1-f
Cu 0.447171484 -1.117032267 -0.159246899 Cu -2.172956307 -0.391917314 0.146753694 Cu -0.548623970 1.336288624 -0.065838218 O 2.270002932 1.097105480 -0.395777574 O -2.237704542 1.342763604 0.594579230 O 0.959486851 0.704425077 -0.963292065 O -1.201969853 -1.824591468 -0.224501120 C 2.902403768 0.048412010 0.270705518 O 2.250797953 -1.047810525 0.411842614 O 4.027315709 0.317694795 0.658071188 SCF energy (Eh) = -5411.350063 (M=3) SCF energy (Eh) = -5411,333856 (M=1)	Cu -0.787230604 -1.317891166 0.027735738 Cu -0.483259881 0.783315581 0.717374715 Cu 1.941993187 0.062792327 0.051480301 O 0.660967677 -0.681433829 1.085995186 O -2.089461887 1.365826402 0.003473405 O 3.293598276 0.859205076 -0.924706950 O -2.431435631 -0.819856477 -0.645576044 C -2.845915203 0.447984399 -0.586043161 O -3.933264311 0.753155321 -1.075885009 O 4.199834985 -0.102670480 -0.891409698 SCF energy (Eh) = -5411.349559 (M=3) SCF energy (Eh) = -5411,336083 (M=1)	Cu 1.384870935 0.992903245 0.000250677 Cu -1.262060131 1.222652741 -0.073723878 Cu 0.410871732 -1.648005220 -0.096615713 O 2.055092504 -0.915254514 -0.538544110 O -1.575884607 -0.216512200 1.278860716 O -1.431745183 -2.113836939 0.052051180 O 0.145651737 2.302679560 -0.122890419 C -1.845460628 -0.897190092 0.197709126 O -2.430217787 -0.231780017 -0.749300267 O 2.686599611 -0.209774848 0.548113371 SCF energy (Eh) = -5411.344794 (M=3) SCF energy (Eh) = -5411,334852 (M=1)
3,4,1-g	3,4,1-h	3,4,1-i
Cu 1.573204764 1.122945363 0.117808079 Cu -1.001528477 0.090938481 -0.316757792 Cu 1.764411659 -1.218898206 0.130879362 O -2.394174612 -1.135288643 -0.027596678 O 0.271306138 -1.171886838 -0.810732650 O 2.978218129 0.094979532 0.525671515 O 0.020053086 1.617232446 -0.518436161 C -3.216526856 -0.149752591 0.304533306 O -4.381813756 -0.270188058 0.633027139 O -2.549512644 0.995643069 0.216421876 SCF energy (Eh) = -5411.362964 (M=3) SCF energy (Eh) = -5411,34261 (M=1)	Cu -0.512734409 -1.238592271 -0.107771034 Cu -0.160328964 1.419818694 -0.202313394 Cu 1.977655618 0.282217529 0.176793555 O 1.083043730 -2.138600394 -0.351725905 O 1.456368816 1.972324986 0.337290871 O 2.262561741 -1.518076281 0.070857382 O -1.642860069 0.458078872 -0.715756398 C -2.623478374 0.021983861 0.161496477 O -2.244623474 -1.085855663 0.726982489 O -3.676028850 0.615656257 0.294408620 SCF energy (Eh) =-5411.362938 (M=3) SCF energy (Eh) = -5411,341266 (M=1)	Cu 1.912408770 -0.000646930 -0.228404311 Cu -0.139911755 1.410074306 0.102014693 Cu -0.142559429 -1.410909052 0.101641992 O -1.950794785 -1.141181688 0.003260096 O 0.494049410 -0.000590361 1.209375112 O 1.622319459 -1.785543458 -0.280252733 O 1.624665712 1.785922674 -0.277812149 C -2.604044455 0.001251580 -0.160328567 O -1.946192218 1.141635654 0.000054519 O -3.799537988 0.004189570 -0.444668276 SCF energy (Eh) =-5411.355750 (M=3) SCF energy (Eh) = -5411,346655 (M=1)
3,4,1-j	3,4,1-k	3,4,1-l
Cu -0.837070635 1.278782155 -0.252806745	Cu -0.876667915 -1.660334374 0.095042684	Cu 1.489204509 -1.191613127 0.011544882
Cu -0.433876041 -0.560347068 0.942864391 Cu 1.928155663 0.282060750 0.017488159 O 3.806768684 -1.591184725 -0.762542846 O 0.590755856 1.033429077 0.983843470 O 3.374085914 -0.367093233 -0.912854723 O -1.935036518 -1.422053939 0.303671462 C -2.731029565 -0.731576981 -0.506528340 O -2.380865717 0.490813426 -0.897989702 O -3.789818621 -1.222025280 -0.899084951 SCF energy (Eh) = -5411.347217 (M=3) SCF energy (Eh) = -5411,322584 (M=1)	Cu -1.768798492 0.723722146 -0.144393937 Cu 0.768935195 1.517543389 0.087937906 O 1.397025782 -0.775186940 0.599283721 O -0.866088096 2.208221126 0.217716358 O 2.546595117 0.919066256 -0.139413738 O -2.423811870 -0.925996555 -0.355404587 C 2.557171231 -0.375163003 -0.132254124 O 3.346827147 -1.162231840 -0.588572332 O 0.883999137 -2.088375253 0.225704553 SCF energy (Eh) =-5411.339581 (M=3) SCF energy (Eh) = -5411,319968 (M=1)	Cu 1.163273664 1.352633715 0.081825367 Cu -1.532378496 0.898417275 -0.042824597 O -2.775290473 -0.421544177 0.518774238 O -0.359354059 2.240607859 -0.161056845 O -0.874083644 -0.658442614 -1.143604153 O 2.538671376 0.242273910 0.285379418 C -0.910260729 -1.571388042 -0.266860335 O -1.923186386 -1.627169128 0.607457872 O 0.015577405 -2.437647076 -0.090033268 SCF energy (Eh) =-5411.338383 (M=3) SCF energy (Eh) = -5411.321741 (M=1)
Cu -0.433876041 -0.560347068 0.942864391 Cu 1.928155663 0.282060750 0.017488159 O 3.806768684 -1.591184725 -0.762542846 O 0.590755856 1.033429077 0.983843470 O 3.374085914 -0.367093233 -0.912854723 O -1.935036518 -1.422053939 0.303671462 C -2.731029565 -0.731576981 -0.506528340 O -2.380865717 0.490813426 -0.897989702 O -3.789818621 -1.222025280 -0.899084951 SCF energy (Eh) = -5411.347217 (M=3) SCF energy (Eh) = -5411,322584 (M=1) 3,4,1-m	Cu -1.768798492 0.723722146 -0.144393937 Cu 0.768935195 1.517543389 0.087937906 O 1.397025782 -0.775186940 0.599283721 O -0.866088096 2.208221126 0.217716358 O 2.546595117 0.919066256 -0.139413738 O -2.423811870 -0.925996555 -0.355404587 C 2.557171231 -0.375163003 -0.132254124 O 3.346827147 -1.162231840 -0.588572332 O 0.883999137 -2.088375253 0.225704553 SCF energy (Eh) =-5411.339581 (M=3) SCF energy (Eh) = -5411,319968 (M=1) 3,4,1-n	Cu 1.163273664 1.352633715 0.081825367 Cu -1.532378496 0.898417275 -0.042824597 O -2.775290473 -0.421544177 0.518774238 O -0.359354059 2.240607859 -0.161056845 O -0.874083644 -0.658442614 -1.143604153 O 2.538671376 0.242273910 0.285379418 C -0.910260729 -1.571388042 -0.266860335 O -1.923186386 -1.627169128 0.607457872 O 0.015577405 -2.437647076 -0.090033268 SCF energy (Eh) =-5411.338383 (M=3) SCF energy (Eh) = -5411,321741 (M=1)

S7 References

[34]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman. Gaussian 16 Rev. B.01, **2016**.

[35]

E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko, A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson, I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie, A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu, B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale, D. Barton, K. Begam, A. Behn, N. Bellonzi, Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty, A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng, M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff, J. Gayvert, Q. Ge, G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina, M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hernández Vera, M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov, Á. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim, G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk, C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler, D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin, F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor, S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin, M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax, K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager, E. I. Proynov, Á. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M. Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada, W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince, R. A. DiStasio, A. Dreuw, B. D. Dunietz, T. R. Furlani, W. A. Goddard, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley, H. L. Woodcock, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert, A. I. Krylov, J. Chem. Phys. 2021, 155, 084801.