1	Supporting Information for
2	Structure and Mobility of Rare Earth Ions in Interlayer Space of
3	Montmorillonite: A Molecular Dynamics Study
4	WANG Caorui, ZHANG Yingchun, LIU Xiandong*
5	State Key Laboratory for Mineral Deposits Research, School of Earth Science and
6	Engineering, Nanjing University, Nanjing 210023, China

8 S1. Mean Square Displacements of La³⁺ and Lu³⁺

9

10 FIGURE S1. 3D Mean square displacements of La³⁺ and Lu³⁺ in the interlayer spaces

11 of montmorillonites at 262 mg_{water}/g_{clay} and 378 mg_{water}/g_{clay} and in aqueous solutions.

12 S2. Simulation Details for La³⁺ and Lu³⁺ in Aqueous Solution

The aqueous solution contained one La³⁺/Lu³⁺, three Cl⁻, and 512 water molecules 13 in a cubic box with a side length of 24.7 Å (Fig S2). The density of water is 1 g/cm³. 14 15 Force filed parameters for counter ion Cl⁻ was developed by Joung and Cheatham.¹ The periodic boundary condition was imposed on three dimensions in all simulations. The 16 Ewald summation was used to calculate the Coulombic interaction with a precision of 17 1.0×10^{-4} and a real-space cutoff radius of 10.0 Å. The van der Waals interactions had 18 a cutoff radius of 10.0 Å. For each simulation, a production run was performed for over 19 2 ns in NVT (298.15 K). The temperature of the system was controlled by using a Nose-20 Hoover chain thermostat. The time step for all simulations was 1.0 fs. 21

FIGURE S2. Model of La^{3+} in aqueous solution. O = red, H = white, $Cl^- = green$, and

 $La^{3+} = blue.$

References

Joung, I. S.; Cheatham III, T. E., Determination of alkali and halide monovalent ion
parameters for use in explicitly solvated biomolecular simulations. *The journal of physical chemistry B* 2008, *112* (30), 9020-9041.