Supporting Information

Layered CrO₂·nH₂O as cathode material for aqueous zinc-ion

batteries: Ab initio study

Lu Liu,^a Zixi He,^a Binghan Wu,^a Hongjia Song,^a*Xiangli Zhong,^a Jinbin Wang,^a Daifeng Zou,^b

Juanjuan Cheng^b*

^aSchool of Materials Science and Engineering, Key Laboratory of Low-dimensional Materials and

Application Technology, Xiangtan University, Xiangtan 411105, P. R. China

^bSchool of Materials Science and Engineering, Hunan Provincial Key Lab of Advanced Materials

for New Energy Storage and Conversion, Department of Physics and Electronic Science, Hunan

University of Science and Technology, Xiangtan 411201, P. R. China

*Corresponding author e-mail address: hjsong@xtu.edu.cn (Hongjia Song)

jjcheng@hnust.edu.cn (Juanjuan Cheng)

Supplimentary Note1

Fig. S1 The zero vibration energy (ΔE_{ZPE}) and entropy change(ΔS) of $A_x CrO_2 \cdot 0.5H_2O$ at 298.15 K

By comparing the energy added values (zero-point vibration energy (ΔE_{ZPE}) and entropy change (ΔS)) of the A_xCrO₂·0.5H₂O (A=H/Zn) structure at 298.15 K, it can be found that the slope corresponding to the H insertion process of the H_yCrO₂·0.5H₂O structure is 0.342, indicating that the additional value has a significant impact on H insertion mechanism. The slope of the Zn_xCrO₂·0.5H₂O structure during the Zn insertion process is only 0.064, indicating that the added value has a relatively small impact on the Zn insertion mechanism.

Supplimentary Note1

Fig. S2 Different stacking configurations of layered CrO₂ structures, (a) O3 stacking; (b) P3 stacking; (c) O1 stacking.

Table S1	The lattice	parameters	of different	stacking	structures	under t	the inter	layer	interacti	on st	rategy a	are
			ma	odified by	DFT-D3	(U)						

Stacking type	Van der Waals	der Waals Lattice parameter (E(meV/f.u.)
01	DFT-D3(U)	a=b=2.91, c= 4.58		-22.079
	PBE	a=b=2.92, c=14.90		
	DFT-D3	a=b=2.89, c=13.49		
03	DFT-D3(U)	a=b=2.91, c=13.67	a=b=2.8797, c=14.169[1]	-22.085
	vdW-DF2(U)	a=b=2.98, c=13.77		
	opt86b-vdw(U)	a=b=2.91, c=13.48		
Р3	DFT-D3(U)	a=b=2.91, c=14.64	a=b=2.8578, c=14.002[2]	-22.048

The common stacking configurations of layered structures include O1, P3, and O3 stacking. The difference between the three structures is the lateral stacking displacement of the O-Cr-O layer, where oxygen atoms exhibit ABAB, ABBCCA, and ABCABC stacking along the c-axis direction, respectively. By using different van der Waals correction methods to correct the interlayer spacing of O3-CrO₂ structure, it was found that the theoretical value was always smaller than the c-axis of the experimentally reported O3-CrO₂ structure, which may be related to the presence of a small amount of Na⁺ between the CrO₂ layers (Na_{δ}CrO₂)[1]. Therefore, the subsequent calculations were only optimized using the DFT-D3 (U) method.

Occupation site

For the Zn insertion mechanism, the non-equivalent sites occupied by Zn are the octahedral center (Zn₁) and tetrahedral center (Zn₂), with corresponding adsorption energies (E_{ad}) of -4.48 eV and -3.98 eV. Meanwhile, for the H insertion mechanism, the non-equivalent sites occupied by H in the O3-CrO₂ structure are lattice oxygen forming -OH bonds and pointing towards the octahedral center (H₁), octahedral center (H₂), and parallel tetrahedral center (H₃), respectively. The corresponding adsorption energies (E_{ad}) are -2.68 eV, 0.38 eV, and -2.39 eV. The non-equivalent sites occupied by H in the P3-CrO₂ structure are the interlayer hydrogen bonding (H₁), tetrahedral center (H₂), and hexagonal prism center (H₃) formed by H and lattice oxygen. The structural optimization of H located at the center of the hexagonal prism has not converged, and the corresponding adsorption energies (E_{ad}) for the latter two are -2.79 eV and 0.45 eV.

Fig. S3 For different reaction mechanisms, the non-equivalent sites occupied by the guest species in the CrO₂ structure, (a) Zn insertion; (b) H insertion (O3 stacking); (c) H insertion (P3 stacking)

Fig. S4 The charge density differences between the guest ion and the substrate under different reaction mechanisms, (a)Zn_{0.125}CrO₂ (Zn insertion); (b)O3-H_{0.125}CrO₂(H insertion); (c)P3-H_{0.125}CrO₂(H insertion); (d)H_{0.125}Zn_{0.125}CrO₂(H/Zn co-insertion). The green and yellow indicate electron depletion and aggregation, respectively, The isosurface is 0.01 electron/ Å³.

Fig. S5 The formation energy of different $H_{0.25}Zn_xCrO_2$ configurations

 $\label{eq:Fig.S6} \label{eq:Fig.S6} Fig. S6 The theoretical capacity of CrO_2 electrode is based on different reaction mechanisms, (a) Zn_{0.5}CrO_2(Zn insertion); (b)P3-HCrO_2(H insertion); (c)H_{0.125}Zn_{0.375}CrO_2(H/Zn \ co-insertion).$

H insertion mechanism

Fig. S7 The diffusion barrier and corresponding transition state model of H in P3-CrO₂ structure (a) Path 1(Longitudinal jump); (b)Path 2(Transverse diffusion)

H/Zn co-insertion mechanism

Fig. S8 The three diffusion paths of Zn at the CrO_2 electrode are under the H/Zn co-insertion mechanism

CrO₂·nH₂O (n=0.25~1.0)

Fig. S9 The optimized pre-intercalation structure water model ($CrO_2 \cdot nH_2O$, (a-d)) and corresponding Density of states (e-h).

Fig. S10 The interlayer distance of CrO₂ electrodes after pre-intercalation into structural water(n=0.25~1.0)

Zn insertion mechanism

Fig. S11 The structural configurations for Zn intercalation in $(1 \times 2 \times 1)$ supercell of $CrO_2 \cdot nH_2O(n=0.25, 0.5, 0.75, 1.0)$ with different Zn concentrations (a) c(Zn)=0.25; (b) c(Zn)=0.5.

H insertion mechanism

Fig. S12 The structural configurations for H inserted in $(1 \times 2 \times 1)$ supercell of $CrO_2 \cdot nH_2O(n=0.25, 0.5, 0.75, 1.0)$ with different H concentrations (a) c(H)=0.25; (b) c(H)=0.5; (c) c(H)=0.75; (d) c(H)=1.0.

Fig. S13 The interlayer distance of CrO₂·nH₂O at different insertion stages (a) Zn insertion mechanism; (b) H

insertion mechanism.

Fig. S14 The angle between the base vectors at different stages of H insertion in H_y CrO₂·nH₂O, (a) n=0.25; (b) n=0.5; (c) n=0.75; (d) n=1.0.

Fig. S15 Discharge curves of Zn^{2+} (red) and H^+ (based on different pH values) insertion/extraction process in CrO₂·nH₂O (n=0.0~1.0).

H/Zn co-insertion mechanism

Fig. S16 The various optimized configurations of H_{0.125}Zr0₂·0.5H₂O (H/Zn co-insertion mechanism)

	lattice parameter							
c(H ₂ O)	a	b	c	a	β	γ		
		Å			Å			
0	5.048	5.828	4.853	90	69.72	90	133.929	
0.25	5.004	5.924	6.836	91.79	76.64	92.36	196.962	
x=0.25	5.143	5.92	7.372	93.65	78.01	89.83	219.075	
x=0.5	5.214	6.012	6.828	84.43	78.66	89.77	208.820	
0.5	5.184	5.677	7.45	90	76.055	90	212.807	
x=0.25	5.133	5.909	7.192	84.94	76.55	90.96	211.188	
x=0.5	5.183	6.058	6.853	90	82.44	90	213.344	
0.75	5.145	5.832	7.52	89.39	72.93	89.78	215.576	
x=0.25	5.107	5.954	7.336	88.70	77.07	89.42	217.417	
x=0.5	5.241	6.051	7.317	86.63	76.24	91.55	224.818	
1.0	5.207	5.821	7.560	87.63	73.69	90.50	219.693	
x=0.25	5.137	5.955	7.308	87.95	78.23	91.53	221.476	
x=0.5	5.235	6.061	7.235	90.03	76.47	89.99	223.186	

Table S2 Lattice parameters and volumes of CrO2 ·nH2O and ZnxCrO2 ·nH2O configurations

	lattice parameter							
c(H ₂ O)	a	b	c	a	β	γ		
		Å			Å			
0	5.048	5.828	4.853	90	69.72	90	133.929	
0.25	5.004	5.924	6.836	91.79	76.64	92.36	196.962	
y=0.25	5.042	5.963	6.878	86.42	73.25	91.18	197.449	
y=0.5	5.105	6.008	6.536	90.21	78.07	90.04	196.144	
y=0.75	5.187	6.053	6.414	91.17	77.69 89.98		196.736	
y=1.0	5.267	6.093	6.411	87.02	76.43	90.06	199.719	
0.5	5.184	5.677	7.45	90	76.055	90	212.807	
y=0.25	5.155	5.795	7.159	90.56	77.44	89.87	208.743	
y=0.5	5.146	5.962	7.224	88.26	69.19	90.19	207.033	
y=0.75	5.244	5.998	7.143	86.25	71.40	90.11	212.420	
y=1.0	5.261	6.079	6.788	88.46	75.84	90.08	210.399	
0.75	5.145	5.832	7.52	89.39	72.93	89.78	215.576	
y=0.25	5.124	5.85	7.472	91.79	73.79	88.88	214.901	
y=0.5	5.124	5.998	7.427	90.95	69.52	90.88	213.819	
y=0.75	5.201	6.04	7.578	90.29	68.06	90.32	220.825	
y=1.0	5.253	6.101	7.558	90.58	67.47	89.82	223.739	
1.0	5.207	5.821	7.560	87.63	73.69	90.50	219.693	
y=0.25	5.179	5.829	7.476	86.75	74.84	90.97	217.392	
y=0.5	5.209	5.941	7.445	90.03	71.49	90.00	218.542	
y=0.75	5.239	6.024	7.498	88.68	69.20	90.49	221.109	
y=1.0	5.269	6.108	7.604	89.48	67.09	90.02	225.444	

Table S3 Lattice parameters and volumes of CrO2 ·nH2O and HyCrO2 ·nH2O configurations

References

- [1] S.-H. Bo, X. Li, A.J. Toumar, and G. Ceder, Chemistry of Materials, 2016, 28, 1419-1429.
- [2] X. Xia,andJ.R. Dahn, Electrochemical and Solid-State Letters, 2012, 15.