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Supplimentary Note1

Fig. S1 The zero vibration energy (∆EZPE) and entropy change(∆S) of AxCrO2·0.5H2O at 298.15 K

By comparing the energy added values (zero-point vibration energy (∆EZPE) and 

entropy change (∆S)) of the AxCrO2·0.5H2O (A=H/Zn) structure at 298.15 K, it can be 

found that the slope corresponding to the H insertion process of the HyCrO2·0.5H2O 

structure is 0.342, indicating that the additional value has a significant impact on H 

insertion mechanism. The slope of the ZnxCrO2·0.5H2O structure during the Zn 

insertion process is only 0.064, indicating that the added value has a relatively small 

impact on the Zn insertion mechanism.
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Supplimentary Note1

(a) (b)

(c)

Fig. S2 Different stacking configurations of layered CrO2 structures, (a) O3 stacking; (b) P3 stacking; (c) O1 

stacking.

Table S1 The lattice parameters of different stacking structures under the interlayer interaction strategy are 

modified by DFT-D3(U)

Stacking 
type Van der Waals Lattice parameter (Å) E(meV/f.u.)

O1 DFT-D3(U) a=b=2.91, c= 4.58 —— -22.079

PBE a=b=2.92, c=14.90

DFT-D3 a=b=2.89, c=13.49

DFT-D3(U) a=b=2.91, c=13.67 -22.085

vdW-DF2(U) a=b=2.98, c=13.77

O3

opt86b-vdw(U) a=b=2.91, c=13.48

a=b=2.8797, 
c=14.169[1]

P3 DFT-D3(U) a=b=2.91, c=14.64 a=b=2.8578, 
c=14.002[2] -22.048

The common stacking configurations of layered structures include O1, P3, and O3 

stacking. The difference between the three structures is the lateral stacking 

displacement of the O-Cr-O layer, where oxygen atoms exhibit ABAB, ABBCCA, and 

ABCABC stacking along the c-axis direction, respectively. By using different van der 

Waals correction methods to correct the interlayer spacing of O3-CrO2 structure, it was 

found that the theoretical value was always smaller than the c-axis of the experimentally 

reported O3-CrO2 structure, which may be related to the presence of a small amount of 

Na+ between the CrO2 layers (NaδCrO2)[1]. Therefore, the subsequent calculations were 

only optimized using the DFT-D3 (U) method.
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Occupation site

For the Zn insertion mechanism, the non-equivalent sites occupied by Zn are the 

octahedral center (Zn1) and tetrahedral center (Zn2), with corresponding adsorption 

energies (Ead) of -4.48 eV and -3.98 eV. Meanwhile, for the H insertion mechanism, 

the non-equivalent sites occupied by H in the O3-CrO2 structure are lattice oxygen 

forming -OH bonds and pointing towards the octahedral center (H1), octahedral center 

(H2), and parallel tetrahedral center (H3), respectively. The corresponding adsorption 

energies (Ead) are -2.68 eV, 0.38 eV, and -2.39 eV. The non-equivalent sites occupied 

by H in the P3-CrO2 structure are the interlayer hydrogen bonding (H1), tetrahedral 

center (H2), and hexagonal prism center (H3) formed by H and lattice oxygen. The 

structural optimization of H located at the center of the hexagonal prism has not 

converged, and the corresponding adsorption energies (Ead) for the latter two are -2.79 

eV and 0.45 eV. 

Fig. S3 For different reaction mechanisms, the non-equivalent sites occupied by the guest species in the CrO2 

structure, (a) Zn insertion; (b) H insertion (O3 stacking); (c) H insertion (P3 stacking)
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Fig. S4 The charge density differences between the guest ion and the substrate under different reaction 

mechanisms, (a)Zn0.125CrO2 (Zn insertion); (b)O3-H0.125CrO2(H insertion); (c)P3-H0.125CrO2(H insertion); 

(d)H0.125Zn0.125CrO2(H/Zn co-insertion). The green and yellow indicate electron depletion and aggregation, 

respectively，The isosurface is 0.01 electron/ Å3.

Fig. S5 The formation energy of different H0.25ZnxCrO2 configurations
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Fig. S6 The theoretical capacity of CrO2 electrode is based on different reaction mechanisms,(a) Zn0.5CrO2(Zn 

insertion); (b)P3-HCrO2(H insertion); (c)H0.125Zn0.375CrO2(H/Zn co-insertion).

H insertion mechanism

Fig. S7 The diffusion barrier and corresponding transition state model of H in P3-CrO2 structure (a) Path 

1(Longitudinal jump); (b)Path 2(Transverse diffusion)
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H/Zn co-insertion mechanism

Fig. S8 The three diffusion paths of Zn at the CrO2 electrode are under the H/Zn co-insertion mechanism
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CrO2·nH2O (n=0.25~1.0)

Fig. S9 The optimized pre-intercalation structure water model (CrO2·nH2O, (a-d)) and corresponding Density of 

states (e-h).

Fig. S10 The interlayer distance of CrO2 electrodes after pre-intercalation into structural water(n=0.25~1.0)
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Zn  insertion mechanism

Fig. S11 The structural configurations for Zn  intercalation in (1×2×1) supercell of CrO2·nH2O(n=0.25,0.5,0.75,1.0) 

with different Zn concentrations (a) c(Zn)=0.25; (b) c(Zn)=0.5.
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H  insertion mechanism

Fig. S12 The structural configurations for H  inserted in (1×2×1) supercell of CrO2·nH2O(n=0.25,0.5,0.75,1.0) 

with different H concentrations (a) c(H)=0.25; (b) c(H)=0.5; (c) c(H)=0.75; (d) c(H)=1.0.
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Fig. S13 The interlayer distance of CrO2·nH2O at different  insertion stages (a) Zn insertion mechanism; (b) H 

insertion mechanism.

Fig. S14 The angle between the base vectors at different stages of H insertion in HyCrO2·nH2O, (a) n=0.25; (b) 

n=0.5; (c) n=0.75; (d) n=1.0.
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Fig. S15  Discharge curves of Zn2+ (red) and H+ (based on different pH values) insertion/extraction process in 

CrO2·nH2O (n=0.0~1.0).

H/Zn co-insertion mechanism

Fig. S16 The various optimized configurations of H0.125Zn0.125CrO2·0.5H2O (H/Zn co-insertion mechanism) 
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Table S2  Lattice parameters and volumes of CrO2·nH2O and ZnxCrO2·nH2O configurations

lattice parameter volume

a b c ɑ β γc(H2O)

Å o Å
3

0 5.048 5.828 4.853 90 69.72 90 133.929

0.25 5.004 5.924 6.836 91.79 76.64 92.36 196.962

x=0.25 5.143 5.92 7.372 93.65 78.01 89.83 219.075

x=0.5 5.214 6.012 6.828 84.43 78.66 89.77 208.820

0.5 5.184 5.677 7.45 90 76.055 90 212.807

x=0.25 5.133 5.909 7.192 84.94 76.55 90.96 211.188

x=0.5 5.183 6.058 6.853 90 82.44 90 213.344

0.75 5.145 5.832 7.52 89.39 72.93 89.78 215.576

x=0.25 5.107 5.954 7.336 88.70  77.07 89.42 217.417

x=0.5 5.241 6.051 7.317 86.63 76.24 91.55 224.818

1.0 5.207 5.821 7.560 87.63 73.69 90.50 219.693

x=0.25 5.137 5.955 7.308 87.95 78.23 91.53 221.476

x=0.5 5.235 6.061 7.235 90.03 76.47 89.99 223.186
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Table S3  Lattice parameters and volumes of CrO2·nH2O and HyCrO2·nH2O configurations

lattice parameter volume

a b c ɑ β γc(H2O)

Å o Å
3

0 5.048 5.828 4.853 90 69.72 90 133.929

0.25 5.004 5.924 6.836 91.79 76.64 92.36 196.962

y=0.25 5.042 5.963 6.878 86.42 73.25 91.18 197.449

y=0.5 5.105 6.008 6.536 90.21 78.07 90.04 196.144

y=0.75 5.187 6.053 6.414 91.17 77.69 89.98 196.736

y=1.0 5.267 6.093 6.411 87.02 76.43 90.06 199.719

0.5 5.184 5.677 7.45 90 76.055 90 212.807

y=0.25 5.155 5.795 7.159 90.56 77.44 89.87 208.743

y=0.5 5.146 5.962 7.224 88.26 69.19 90.19 207.033

y=0.75 5.244 5.998 7.143  86.25 71.40 90.11 212.420

y=1.0 5.261 6.079 6.788 88.46 75.84 90.08 210.399

0.75 5.145 5.832 7.52 89.39 72.93 89.78 215.576

y=0.25 5.124 5.85 7.472 91.79 73.79 88.88 214.901

y=0.5 5.124 5.998 7.427 90.95 69.52 90.88 213.819

y=0.75  5.201 6.04 7.578 90.29 68.06 90.32 220.825

y=1.0 5.253 6.101 7.558 90.58 67.47 89.82 223.739

1.0 5.207 5.821 7.560 87.63 73.69 90.50 219.693

y=0.25  5.179 5.829 7.476 86.75 74.84 90.97 217.392

y=0.5 5.209 5.941 7.445 90.03 71.49 90.00 218.542

y=0.75 5.239 6.024 7.498 88.68 69.20  90.49 221.109

y=1.0 5.269 6.108 7.604 89.48 67.09 90.02 225.444
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