Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxx

Supporting Material for: Electronic structure, absorption spectra and oxidation dynamics in polyynes and dicyanopolyynes

Lazaros Chalkopiadis,^a Konstantinos Lambropoulos,^a, Constantinos Simserides^{*a}

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

This is Supporting Material for: Electronic structure, absorption spectra and oxidation dynamics in polyynes and dicyanopolyynes. The matlab code for TB with all valence orbitals can be found in http://users.uoa.gr/~csimseri/All_Vallence_Orbitals.zip. The zip contains also some auxiliary files, including geometries.

1 Polyynes

Figure S1 presents the molecular eigenstates of *polnsl* molecules with n = 2, 4, 6, 8, 10. Eigenenergies together with *character*, i.e., analysis of molecular states into atomic valence states.

Fig. S2 shows a snapshot, for the initial 3 femtoseconds, of the time-dependent probabilities at C_1 , C_3 and C_6 orbitals, for initial placement of the hole at 2*s* orbital of C_1 , in *pol6sl*. The $2p_x$ and $2p_z$ time-dependent probabilities remain zero. An *sp* path is activated in this case: only 2*s* and $2p_y$ orbitals have significant probabilities. In Fig. S3 we show the same quantities for the time interval from 7 to 10 femtoseconds.

Table S1 shows Löwdin Population Analysis, at the B3LYP/STO-3G level of theory, for *pol-n-sl* molecules with n = 2, 4, 6, 8, 10. Table S2 shows Löwdin Population Analysis (shell charges), for the ground state (GS) and localised hole state (LHS), at carbon atom C₁ of *pol-n-sl* molecules with n = 2, 4, 6, 8, 10, at the B3LYP/ STO-3G level of theory. The difference between GS and LHS is also shown.

Table S1 Löwdin Population Analysis at the B3LYP/STO-3G level of theory for pol-n-s1 molecules with n=2,4,6,8,10.

atom	neutral	pol2sl	pol4sl	pol6sl	pol8sl	pol10sl
C1	6	6.08	6.06	6.05	6.05	6.05
C2	6	6.08	6.03	6.03	6.03	6.02
C3	6	-	6.03	6.01	6.01	6.00
C4	6	-	6.06	6.01	6.01	6.01
C5	6	-	-	6.03	6.01	6.01
C6	6	-	-	6.05	6.01	6.01
C7	6	-	-	-	6.03	6.01
C8	6	-	-	-	6.05	6.00
C9	6	-	-	-	-	6.02
C10	6	-	-	-	-	6.05
H_{n+1}	1	0.92	0.91	0.91	0.91	0.90
H_{n+2}	1	0.92	0.91	0.91	0.91	0.90

^a Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece.

Table S2 Löwdin Population Analysis (shell charges), for the ground state (GS) and the localised hole state (LHS), at carbon atom C₁ of *pol-n-sl* molecules with n = 2, 4, 6, 8, 10, B3LYP/ STO-3G level of theory. The difference between GS and LHS is also shown.

	Löwdin Population Analysis				
Molecule	State	"1 <i>s</i> "	"2 <i>s</i> "	" $2p''$	
pol2sl	GS	1.99	1.05	3.05	
	LHS	1.99	0.97	2.12	
	GS—LHS	0.00	0.08	0.93	
pol4sl	GS	1.99	1.05	3.02	
	LHS	1.99	0.98	2.09	
	GS–LHS	0.00	0.07	0.93	
pol6sl	GS	1.99	1.06	3.01	
	LHS	1.99	0.99	2.08	
	GS–LHS	0.00	0.07	0.93	
pol8sl	GS	1.99	1.06	3.00	
	LHS	1.99	0.99	2.07	
	GS–LHS	0.00	0.07	0.93	
pol10sl	GS	1.99	1.06	3.00	
	LHS	1.99	0.99	2.08	
	GS–LHS	0.00	0.07	0.92	

Fig. S1 Molecular eigenstates of *polnsl* molecules with n = 2, 4, 6. Eigenenergies together with *character*, i.e., analysis of molecular states into atomic valence states.

Fig. S1 Molecular eigenstates of *polnsl* molecules with n = 8, 10. Eigenenergies together with *character*, i.e., analysis of molecular states into atomic valence states.

Fig. S2 A snapshot, for the initial 3 femtoseconds, of the time-dependent probabilities at C₁, C₃ and C₆ orbitals, for initial placement of the hole at 2s orbital of C₁, in *pol6sl*. The $2p_x$ and $2p_z$ time-dependent probabilities remain zero. An *sp* path is activated in this case: only 2s and $2p_y$ orbitals have significant probabilities.

Fig. S3 A snapshot, for the time interval from 7 to 10 femtoseconds, of the time-dependent probabilities at C₁, C₃ and C₆ orbitals, for initial placement of the hole at 2s orbital of C₁, in *pol6sl*. The $2p_x$ and $2p_z$ time-dependent probabilities remain zero. An *sp* path is activated in this case: only 2s and $2p_y$ orbitals have significant probabilities.

2 Dicyanopolyynes

Figure S4 shows the molecular states of *dicyano-n-polyynes* with n = 2,4,6,8,10. Eigenenergies and *character*, i.e., analysis of molecular states into atomic valence states.

Table S3 shows the Löwdin Population Analysis, at the B3LYP/STO-3G level of theory, for *dicyano-n-polyynes* molecules with n = 2, 4, 6, 8, 10. Table S4 shows the Löwdin Population Analysis (shell charges), for ground state (GS) and localised hole state (LHS), at nitrogen atom N₁ of *dicyano-n-polyynes* with n = 2, 4, 6, 8, 10, B3LYP/ STO-3G level of theory. The difference between GS and LHS is also shown.

Table S3 Löwdin Population Analysis, at the B3LYP/STO-3G level of theory for *dicyano-n-polyynes* with n = 2, 4, 6, 8, 10.

atom	neutral	dicyano2	dicyano4	dicyano6	dicyano8	dicyano10
N1	7	7.04	7.05	7.06	7.06	7.07
C2	6	5.96	5.96	5.97	5.97	5.97
C3	6	5.96	5.98	5.99	6.00	6.00
C4	6	-	5.98	5.98	5.98	5.98
C5	6	-	5.96	5.98	5.99	5.99
C6	6	-	-	5.99	5.99	5.99
C7	6	-	-	5.97	5.98	5.99
C8	6	-	-	-	6.00	5.99
C9	6	-	-	-	5.97	5.98
C10	6	-	-	-	-	6.00
C11	6	-	-	-	-	5.97
N_{n+2}	7	7.04	7.06	7.06	7.06	7.07

Table S4 Löwdin Population Analysis (shell charges), for the ground state (GS) and the localised hole state (LHS), at nitrogen atom N₁ of *dicyanon-polyynes* molecules with n = 2, 4, 6, 8, 10, B3LYP/ STO-3G level of theory. The difference between GS and LHS is also shown.

molecule	Löwdin Population Analysis				
	State	"1 <i>s</i> "	"2 <i>s</i> "	" $2p''$	
dicyano2	GS	2.00	1.69	3.35	
	LHS	2.00	1.67	2.37	
	GS - LHS	0.00	0.02	0.98	
dicyano4	GS	2.00	1.69	3.36	
	LHS	2.00	1.52	2.53	
	GS - LHS	0.00	0.17	0.83	
dicyano6	Gs	2.00	1.69	3.37	
	LHs	2.00	1.56	2.50	
	GS - LHS	0.00	0.13	0.87	
dicyano8	GS	2.00	1.69	3.37	
	LHS	2.00	1.57	2.49	
	GS - LHS	0.00	0.12	0.88	
dicyano10	GS	2.00	1.69	3.37	
	LHS	2.00	1.58	2.48	
	GS - LHS	0.00	0.11	0.89	

Fig. S4 Molecular eigenstates of *dicyano-n-polyynes* with n = 2, 4, 6. Eigenenergies and *character*, i.e., analysis of molecular states into atomic valence states.

Fig. S4 Molecular eigenstates of *dicyano-n-polyynes* with n = 8, 10. Eigenenergies and *character*, i.e., analysis of molecular states into atomic valence states.

3 Comparison of polyynes to dicyanopolyynes

Fig. S5 Total DFT energies of the polyynes (H_2C_{2m}) and dicyanopolyynes $(N_2C_{2m}, bottom)$, n = 1, 2, ..., 5, at the B3LYP/cc-pVTZ level of theory.

Results at different levels of theory converge nicely as we increase the basis set. A comparison of the total DFT energies of polyynes (H_2C_{2m}) and dicyanopolyynes (N_2C_{2m}) is shown in Fig. S5.

The HOMO and LUMO orbital energies of the dicyanopolyynic series (N_2C_{2m}), m = 1, 2, ..., 5, can be used to obtain the HOMO-LUMO gap. In Fig. S7, we use the largest of the basis sets used, cc-pVTZ, to illustrate the variation of the HOMO-LUMO gap increasing *m*.

HOMO-LUMO gaps of polyynes (H_2C_{2m}) and dicyanopolyynes (N_2C_{2m}) , n = 1, 2, ..., 5, at the B3LYP/cc-pVTZ level of theory. Total DFT energies of the polyynes (H_2C_{2m}) and dicyanopolyynes (N_2C_{2m}) , bottom), n = 1, 2, ..., 5, at the B3LYP/cc-pVTZ level of theory.

Contributions (one-electron terms, Coulomb repulsion, exchange correlation, nuclear repulsion) to the total DFT energies of the polyynic series ($C_{2m}H_2$, top) and the dicyanopolyynic series ($C_{2m}N_2$, bottom), for n = 1, 2, ..., 5, using the cc-pVTZ basis set.

Fig. S6 Contributions (one-electron terms, Coulomb repulsion, exchange correlation, nuclear repulsion) to the total DFT energies of the polyynic series ($C_{2m}H_2$, top) and the dicyanopolyynic series ($C_{2m}N_2$, bottom), for $n = 1, 2, \ldots, 5$, using the cc-pVTZ basis set.

Fig. S7 HOMO-LUMO gaps of polyynes (H_2C_{2m}) and dicyanopolyynes $(N_2C_{2m}),\,n=1,2,\ldots,5,$ at the B3LYP/cc-pVTZ level of theory.