Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supplementary material

Tunable electronic and optoelectronic characteristics of two-

dimensional β -AsP monlayer: A first-principles study

Zhong-Hui Xu,*a,b,c,e Kaiyu Wei,a Zhengyu Wang,a Junlin Jiang,a Guogang Liud and

San-Huang Ke d

^a School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou

341000, China

^b School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China

^c Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Shanghai

200092, People's Republic of China

^d MOE Key Laboratory of Microstructured Materials, School of Physics Science and Engineering,

Tongji University, Shanghai 200092, China

^e Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control,

Ganzhou 341000, China

* Corresponding Author.

E-mail addresses: longxister@163.com

1. The electronic structures of monolayer β -AsP

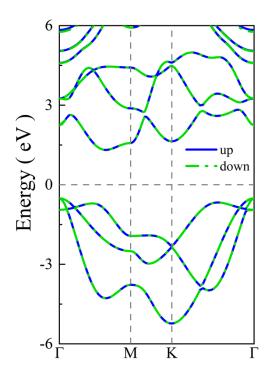


Fig. S1. Spin-polarized energy band structure of monolayer β -AsP.

2. The dynamic stability of monolayer β -AsP

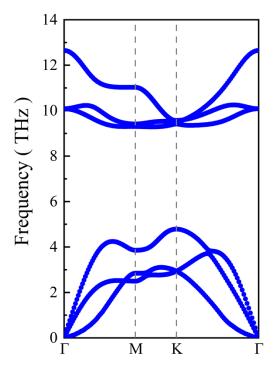


Fig. S2. Phonon spectrum of monolayer β -AsP.

3. Molecular dynamics simulations of monolayer β -AsP

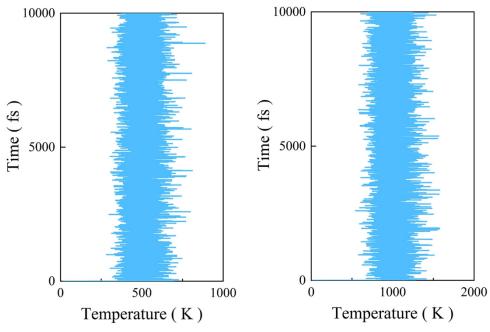


Fig. S3. The free energy variation over time (10.0 ps) of the β -AsP monolayer at temperatures of 500 K and 1000 K was obtained through atomic molecular dynamics (AIMD) simulations.

4. Optical properties of β -AsP monolayers

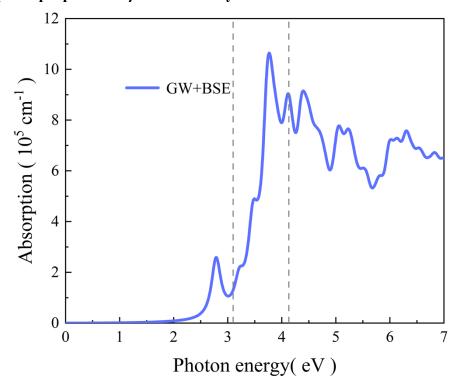


Fig. S4. calculation of light absorption coefficient of β -AsP monolayer using GW + BSE method.

5. Electronic structure of monolayer β -AsP

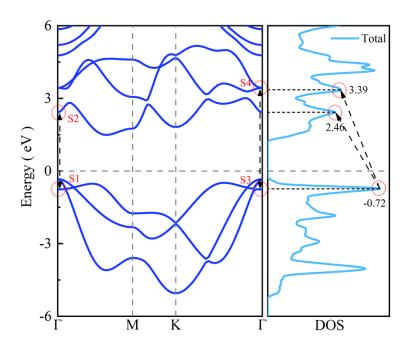


Fig. S5. Band structure and density of states with PBE functional for β -AsP monolayer.