Vibrational mode Tailoring Approach: An Efficient Route to Compute Anharmonic Molecular Vibrations of Large Molecules

Hrishit Mitra[†], Dhiksha Sharma[†] and Tapta Kanchan Roy^*

Department of Chemistry and Chemical Sciences,

Central University of Jammu, Rahya-Suchani (Bagla), Jammu, J&K, 181143 India

email: tapta.che@cujammu.ac.in

^{*†*}both the authors have equal contribution

Contents	Page
Figure S1. Pictorial representation of peripheral/terminal atoms for butanol and	S/
NATA molecules	54
Table S1. Calculation of normal mode displacements with examples	S5-S6
Figure S2. Histogram for the population/distribution of normal modes following their coupling strengths	S 7
Figure S3. Some selected normal mode of vibrations of butanol	S8
Figure S4. Relation of anharmonic correction and relative coupling with	~~~
respect to OH stretching mode for Butanol	S 9
Table S2. Change in O-H stretching frequency of Butanol during sequential addition of rest of the modes.	S10
Figure S5. Effects of the addition of sequential normal modes (in descending	611
order) on the O-H stretching (v_{39}) of butanol	S11
Table S3. Comparisons of computed anharmonic frequencies (in cm ⁻¹) and intensities (km mol ⁻¹) of different VTA guided PESs considering various set of normal modes of butanol.	S12
Figure S6. Qualitative comparison of relative coupling strength (ξ_R) and relative atomic displacement (q_R) for O-H stretching of butanol.	S13
Figure S7. Normal mode analysis of O-H bending (Mode 18) of butanol.	S14
Table S4 . Individual coupling (ξ) and relative coupling (ξ_R) strength of O-H in plane bending (ξ_{18}) with rest of the normal modes along with anharmonic corrections ($\Delta v = v_{diagonal} - v_{VSCF-PT2}$ in cm ⁻¹) for butanol.	S15
Table S5. Individual coupling (ξ) and relative coupling (ξ_R) strength of CH ₃ stretching (ξ_{37}) with rest of the normal modes along with anharmonic corrections ($\Delta v = v_{diagonal} - v_{VSCF-PT2}$ in cm ⁻¹) for butanol.	S16
Table S6. Individual coupling (ξ) and relative coupling (ξ_R) strength of C-H bending (ξ_{27}) with rest of the normal modes along with anharmonic corrections ($\Delta v = v_{diagonal} - v_{VSCF-PT2}$ in cm ⁻¹) for butanol.	S17
Figure S8. Normal mode analysis of CH ₃ bending (Mode 27) of butanol	S18
Table S7 . Comparative study of different relative coupling (ξ_R) values for Mode 39 (O-H stretching), Mode 18 (O-H bending), Mode 37 (CH ₃ stretching) and Mode 27 (CH ₃ bending) of Butanol. Some selected normal modes of different relative coupling values are considered.	S19
Table S8. Individual (ξ) and relative coupling (ξ_R) strengths for mode 92 with rest of the normal modes of NATA	S20
Table S9. Individual (ξ) and relative (ξ_R) coupling strength of Symmetric-NH stretching (ξ_{90}) with rest of the normal modes for NATA molecule.	S21
Table S10. Individual (ξ) and relative (ξ_R) coupling strength of φ N-H stretching (ξ_{91}) with rest of the normal modes for NATA molecule.	S22
Table S11. Individual (ξ) and relative (ξ_R) coupling strength of Indole N-H stretching (ξ_{93}) with rest of the normal modes for NATA molecule.	S23
Table S12. Individual (ξ) and relative (ξ_R) coupling strength of C=O stretching (ξ_{78}) with rest of the normal modes for NATA molecule.	S24
Table S13 . Comparative study of ξ_{max} for selected N-H stretching, N-H bending and C=O stretching for NATA.	S25
Table S14 . Individual (ξ) and relative (ξ_R) coupling strength of NH ₂ bending (ξ_{51}) with rest of the normal modes for NATA molecule.	S26
Table S15. Comparisons of computed anharmonic frequencies (in cm ⁻¹) and intensities (km mol ⁻¹) of different VTA guided PESs considering various set of normal modes of NATA molecule.	S27-S28

Figure	Figure S9. Normal mode analysis of NATA for						
a.	Anti-symmetric NH ₂ stretching (Mode 92)						
b.	Indole N-H stretching (Mode 93)						
с.	C=O stretching (Mode 78)	S29-S34					
d.	NH ₂ bending (Mode 51)						
e.	Symmetric-N-H stretching (Mode 90)						
f.	φ N-H stretching (Mode 91)						

Fig. S1. Pictorial representation of terminal atom encircled for each target mode considered for normal mode analysis: upper panel: butanol and lower panel: NATA.

Calculations of Atomic Mode displacements

We assessed the displacements of target atoms in target normal modes of vibration along with other modes. For a system of *m* atoms with *N* vibrational modes, target mode (*t*) is the mode of interest. To calculate the atomic displacements for a target mode, we mainly focused on the terminal atom and its displacements in different vibrational modes which are coupled with the target mode in different extent. Here, the terminal atom (which is also a target atom) is the one which is connected to other atom only from one side (by single, double bonds, etc.). The component of the atomic displacement vector of atom *a* for mode *i* (represented as q_a^i) is calculated, focusing mostly on the terminal atom(s) of the target modes as

$$q_a^i = \sqrt{\Delta X_a^2 + \Delta Y_a^2 + \Delta Z_a^2} \tag{1}$$

Here, ΔX_a , ΔY_a , and ΔZ_a , are atomic displacements with the unit of length (Å) for *i*th mode, along *x*, *y*, and *z* axes from the equilibrium position, respectively. Relative atomic displacements (q_R) of an *a*th atom for *i*th mode is then calculated with respect to displacements of same atom for the target mode as,

$$q_{\rm R} = q_a^{\,l}/q_a^{\,t} \tag{2}$$

Since q_R is ratio of atomic displacements for two different modes, it is technically a unitless quantity. It is aimed to analyse the position of the terminal atom/target atom in various vibrational modes and its comparison with that of target mode.

Atoms(a)	ΔX	ΔY	ΔZ	$q_a^i = \sqrt{\Delta X_a^2 + \Delta Y_a^2 + \Delta Z_a^2}$
C1	-0.00002446	0.00004225	0.00000000	0.00
H2	0.00011600	-0.00026649	0.00000000	0.00
H3	0.00000596	0.00002860	-0.0000266	0.00
H4	0.00000595	0.00002859	0.00000266	0.00
C5	0.00005011	-0.00016354	0.00000000	0.00
H6	-0.00011587	0.00040497	0.00046602	0.00
H7	-0.00011585	0.00040501	-0.00046605	0.00
C8	-0.00001257	0.00035821	0.00000000	0.00
H9	0.00068062	0.00024315	-0.00048906	0.00
H10	0.00068063	0.00024313	0.00048904	0.00
C11	-0.00015174	-0.00192316	0.00000000	0.00
H12	0.00258304	-0.00117432	0.00069445	0.00
H13	0.00258306	-0.00117428	-0.00069452	0.00
014	-0.05518561	-0.02502507	0.00000000	0.06
H15	0.87106296	0.41850540	-0.00000001	0.97

Table S1a. Calculations of atomic mode displacements for target mode 39 for butanol

Table S1b. Actual and normalized normal mode displacement for strongly/moderately coupled modes
$(\xi_{R} > 0.2)$ with respect to OH stretching mode (target mode) for butanol molecule

Actual normal mode displacement (\mathbf{q}_a^i)									
Atom	Atom Mode 39 Mode 18 Mode 13 Mode 5 Mode 3								
014	0.06	0.04	0.12	0.06	0.12	0.00			
H15	0.97	0.61	0.21	0.95	0.21	0.15			
Normali	zed normal	mode displa	cement (q _R))					
Atom	Mode 39	Mode 18	Mode 13	Mode 5	Mode 3	Mode 1			
014	O14 1.0 0.6 1.9 0.9 2.0								
H15	1.0	0.6	0.2	1.0	0.2	0.2			

One of the target modes for butanol which is studied is mode **39** i.e., O-H stretching where the terminal atom is H15 which shows the maximum displacement in this vibration. To explain a specific instance, the last row of table S1 shows the displacement of H15 atom from the equilibrium position along x, y and z axes respectively. Following that atomic mode displacement, say, q_{H15}^{39} is calculated in unit of length (Å) following eq.1 for H15 atom of mode **39** such that,

$$q_{H15}^{39} = \sqrt{\Delta X_{H15}^2 + \Delta Y_{H15}^2 + \Delta Z_{H15}^2}$$

$$q_{H15}^{39} = \sqrt{(0.87106296)^2 + (0.41850540)^2 + (-0.00000001)^2}$$

$$q_{H15}^{39} = 0.97$$

To assess the position of terminal atom in other modes with respect to the target mode, relative atomic mode displacement ' q_R ' is calculated. For that, atomic mode displacements of terminal atom in different modes is required as shown in Table S1b. For illustration, q_R of H15 for mode 5 can be calculated by normalising its displacement with that of H15 in the target mode as,

$$q_{\rm R} = \frac{q_{\rm H15}^5}{q_{\rm H15}^{39}}$$

$$q_R=\frac{0.95}{0.97}$$

 $q_R = 0.979$ and can be calculated similarly for other modes as well.

Categorisation of relative coupling strength (ξ)

We have considered the pair-wise couplings (ξ) of the target mode with the rest of the modes one at a time followed by the computation of the VSCF-PT2. That brings 38 different values of ξ_R which are then compared with the full potential as well as intrinsic anharmonicities. The magnitudes of the individual ξ are different for different pair-wise couplings and the relative coupling values (ξ_R) are distributed from 0.0 to 1.0. For comprehensive categorization of ξ_R values for the strongly, moderately, and weakly coupled modes, we have computed a set of 2,016 different ξ_R values for two molecules, butanol, and NATA molecules. The histogram as given below clearly shows the characteristic distribution pattern of ξ_R . Majority of the ξ_R values are very small and fall in the range of 0.0 to 0.1 (~68%). The second most populated range is 0.2 to 1.0 (~18%). For rest of the cases, the population of vibrational modes decrease systematically with the increase of ξ_R . A small increase in population with ξ_R from 0.9 to 1.0 shows that for each target mode, a group of other modes are always present with very strong mutual coupling. Following this observation, the ξ_R is duly categorized in three different segments: strong (1.0 $\geq \xi_R \geq 0.2$), moderate (0.1 $\leq \xi_R \leq 0.2$) and weak ($\xi_R \leq 0.1$). This classification is followed throughout this work unless it is specified.

Fig. S2. Histogram for the population/distribution of normal modes following their coupling strengths considering 2016 number of ξ_R values of butanol and NATA molecules. The pie-chart represents the categorization of strongly, moderately, and weakly coupled modes.

Fig S3. Some selected normal mode of vibrations of butanol. The top panel represents the target mode. Middle and bottom panels represent the strongly and weakly coupled modes, respectively.

Relation between Anharmonic correction and Relative coupling

Below we have plotted the anharmonic corrections due to pure pair wise coupling on top of intrinsic anharmonic values against the $\xi_{\rm R}$ following the data given in table the main manuscript. A near linear relation is found for Δv against ξ_R for majority of the cases with some exceptions. It is observed that for some cases high ξ_R gives comparatively less/high $\Delta v (v_{diagonal} - v_{VSCF-PT2})$ values and sometimes also show blue shifts. Vibrational modes are unique in a sense that for a particular mode, it can vary from one system to another following the topology of the molecular system and the vibrational modes involved in it. Consequently, the extent of coupling, corresponding magnitude, and the direction (red/blue shift) of corrections can vary system to system. However, the overall effect is generally found red shifted towards the converged values. Next, we turn to check the types of modes with different extent of ξ and ξ_R with respect to mode **39**. Mode **5**, corresponds to highest ξ value (so, $\xi_R = 1$), is O14-H15 bending mode which leads to noticeable ~22 cm⁻¹ red shift. Mode **3** (torsion, $\xi_R = 0.22$) and **18** (O14-H15 in plane bending + C11-H12H13 bending, $\xi_R = 0.38$) also involve displacements of O14-H15 moiety and strongly coupled with O14-H15 stretching resulting in ~ 2.7 and ~ 10.5 cm⁻¹ red shifts, respectively. The other 2 strongly/moderately coupled modes i.e., 1 (torsion, $\xi_R = 0.4$) and 13 (O14-H15 bending + CH₂ bending, $\xi_{R} = 0.19$) result in ~4-6 cm⁻¹ red shift. For all these cases, atomic displacement of O-H moiety is found significant. For example, q and q_R for mode 5 are 0.95 and 0.98 and for mode 18, these are 0.61 and 0.63, respectively. That shows that analysis of q and q_R can offer an efficient protocol to sample a set of important normal modes for a target mode without calculating the full pair-wise PES. Next, the 6 moderately coupled modes mostly involve the bending of this O-H moiety mixed with bending of carbon chain or adjacent -CH₂ groups. These observations also indicate that O-H stretching is mostly a local mode. Rest of the modes are found to be weakly coupled to very weakly coupled and attenuate to $q \approx 0$ with the increase in distance from the target mode (39), for which the ξ values are also found very small or close to zero. Overall, it is observed that normal modes corresponding to different types of O-H vibrations are significantly coupled with O-H stretching.

Fig S4. Relation of anharmonic correction and relative coupling with respect to OH stretching mode (mode 39) for Butanol.

Description	O-H str.	Description	O-H str. freq.
-	freq. (cm ⁻¹)	_	(cm ⁻¹)
v39	3664	v39,,19	3653
v39,38	3664	v39,,18	3642
v39,38,37	3664	v39,,17	3642
v39,38,37,36	3664	v39,,16	3642
v39,,35	3664	v39,,15	3639
v39,,34	3664	v39,,14	3639
v39,,33	3664	v39,,13	3634
v39,,32	3664	v39,,12	3631
v39,,31	3664	v39,,11	3632
v39,,30	3665	v39,,10	3630
v39,,29	3665	v39,,9	3630
v39,,28	3665	v39,,8	3630
v39,,27	3665	v39,,7	3628
v39,,26	3665	v39,,6	3628
v39,,25	3665	v39,,5	3610
v39,,24	3659	v39,,4	3609
v39,,23	3659	v39,,3	3610
v39,,22	3658	v39,,2	3610
v39,,21	3658	v39,,1	3598
v39,,20	3653		

Table S2. Change in O-H stretching frequency ($v_{diagonal} - v_{VSCF-PT2}$) of Butanol due to pairwise coupling following sequential addition of rest of the modes.

Figure S5. Effects of the addition of sequential normal modes (in descending order) on the O-H stretching (v_{39}) of butanol. Y-axis represent the change in the wavenumber due to pure pair-wise coupling over diagonal values during sequential addition of normal modes. $\Delta v = v_{diagonal} - v_{VSCF-PT2}$ (in cm⁻¹) of O-H stretching.

Y-axis represents corrections due to pure pair-wise coupling effects on top of diagonal value (Δv) . X-axis represents the successive addition of normal modes with target mode O-H stretching (v39) for the construction of the anharmonic PES. For example, v38 and v37 represent PESs considering mode **39**, **38** and mode **39**, **38**, **37**, respectively, and so on. It is found that for most of the cases strongly/moderately coupled modes the computed transitions undergo noticeable red shift while contributions of the weakly coupled modes are insignificant.

Fig. S6. Pair-wise coupling potentials (V_{ij}^{2coup}) of 3 modes (upper panel) with different magnitude of couplings (ξ) with O-H stretching (mode **39**) for butanol molecule computed at B3LYP/6-311G(*d*,*p*) using 16×16 grid (these 2D grids map the changes in potential energy as a function of displacement along 2 normal modes) along with their atomic displacement (q) of same modes (lower panel).

Table S3. Comparisons of computed anharmonic frequencies (in cm⁻¹) and intensities (km mol⁻¹) of different VTA guided PESs considering various sets of normal modes by analysing relative normal mode displacement (q_R) and relative coupling (ξ_R) with diagonal and full PES for O-H stretching (mode **39**), O-H bending (mode **18**), CH₃ stretching (Mode **37**) and CH₃ bending (Mode **27**) of butanol. The bold number in PES type represents target mode. Here ω_{HO} and I_{HO} represent corresponding harmonic frequencies (in cm⁻¹) and intensities (km mol⁻¹), respectively.

Mode 39: O-H stretching (ω _{HO} = 3835 cm ⁻¹ , I _{HO} = 21.13)										
PES type	q r	00-н	Іо-н		PES type	ξr	Ю О-Н	Іо-н		
Diagonal		3664	14.1		Diagonal		3664	14.1		
39 ,18,5	≥ 0.5	3632	17.7		39 ,24,20,15,13	$0.1 \leq \xi_{R} \leq 0.2$	3642	14.8		
				4	12,7					
39 ,20,18,5	≥ 0.4	3628	17.9		39 ,18,5,3,1	≥ 0.2	3613	18.1		
39 ,24,20,18,15,5	\geq 0.3	3622	18.1		39, 24,20,18,15,13,12,7,5 .3,1	≥ 0.1	3602	18.8		
39 ,24,20,18,15,13,12,5,	≥ 0.2	3615	18.5							
Full PES		3598	18.9		Full PES		3598	18.9		
Mode 18: O-H Bending	$(\omega_{\rm HO} = 1250 \text{ cm})$	$^{-1}$. Ino = 4	4.36)	1	1 011 1 255		0070	100		
PES type	QR) _110 100-н	Іо-н		PES type	٤R	V О-Н	Іо-н		
Diagonal	1	1263	45.3		Diagonal		1263	45.3		
39,24,20,18,5	≥ 0.5	1220	45.1	1	33,24,22,21, 18 ,6	$0.1 \le \xi_{\rm R} \le 0.2$	1267	45.3		
39,24,20, 18 ,15,12,5	≥ 0.4	1218	45.1	1	39,38,36,34,31,30,20,18,	≥ 0.2	1200	45.0		
					15,14,13,12,10,7,5,3,1	_				
39,24,20, 18 ,15,13,12,5,	≥ 0.3	1221	45.0	1	39,38,36,34,33,31,30,24,	≥ 0.1	1204	45.0		
3					22,21,20, 18 ,15,14,13,12,					
					10,7,6,5,3,1					
39,24,22,20,18,15,13,1	≥ 0.2	1224	45.0	1						
2,7,5,3,1										
Full PES		1205	45.0		Full PES		1205	45.0		
Mode 37: C-H stretchin	g (ωно = 3079 сі	n ⁻¹ , Іно =	79.01)							
PES type	qr	Ю С-Н	Іс-н		PES type	ξr	Ю С-Н	Іс-н		
Diagonal		3131	78.8		Diagonal		3131	78.8		
38, 37 ,34,33,28,27,26,2	≥ 0.5	2910	76.8		37 ,36,35,28,27,26,25,11,	$0.1 \le \xi_{\rm R} \le 0.2$	3070	78.7		
3,11,4					10,9,8					
38, 37 ,34,33,28,27,26,2	≥ 0.4	2891	76.7		38, 37 ,34,33,32,23,4,2,1	≥ 0.2	2925	76.8		
5,23,15,11,9,4,1										
38, 37 ,36,34,33,28,27,2	≥ 0.3	2875	76.6		38, 37 ,36,35,34,33,32,28,	≥ 0.1	2876	76.6		
6,25,23,17,15,12,11,10,					27,26,25,23,11,10,9,8,4,					
9,8,6,4,3,1					2,1					
38, 37 ,36,35,34,33,28,2	≥ 0.2	2872	76.6							
7,26,25,23,21,17,16,15,										
12,11,10,9,8,6,4,3,2,1										
Full PES		2862	76.6		Full PES		2862	76.6		
Mode 27: C-H Bending	$(\omega_{\rm HO} = 1501 \text{ cm})$	$^{-1}$, I _{HO} = 7	.6)							
PES type	q R	<i><i>v</i><i>C-H</i></i>	I_{C-H}		PES type	ξr	<i><i>v</i><i>C</i>-<i>H</i></i>	I_{C-H}		
Diagonal		1501	8.0		Diagonal		1501	8.0		
38,33, 27 ,23,10,4	≥ 0.5	1489	8.0		34,28, 27 ,26,4	$0.1 \le \xi_{\mathbf{R}} \le 0.2$	1514	8.0		
38,34,33, 27 ,23,15,10,4	≥ 0.4	1487	8.0		38,37, 27	≥ 0.2	1465	8.0		
38,34,33,28, 27 ,26,23,1	≥ 0.3	1492	8.0		38,37,34,28,	≥ 0.1	1482	8.0		
5,10,4,3,2					27 ,26,4					
38,34,33,28, 27 ,26,23,2	≥ 0.2	1493	8.0							
0,17,15,11,10,7,4,3,2										
Full PES		1480	8.0	1	Full PES		1480	8.0		

Figure S7. Normal mode analysis of O14-H15 bending (Mode 18) of butanol. The upper and lower panels represent some weakly coupled and strongly coupled normal modes, respectively, with O-H bending. Displacements during different modes are given in different colors

Pair-wise	ξ	ξr	Δv	Pair-wise	٤	ξr	Δv
coupling	-	-		coupling	-	-	
ξ(18,39)	1188	0.85	25.06	ξ(18,20)	324	0.23	-3.73
ξ(18,38)	373	0.27	1.37	ξ(18,19)	49	0.03	-1.63
ξ(18,37)	97	0.07	1.45	ξ(18,17)	52	0.04	-1.01
ξ(18,36)	414	0.30	3.23	ξ(18,16)	108	0.08	-0.64
ξ(18,35)	114	0.08	1.41	ξ(18,15)	349	0.25	-2.28
ξ(18,34)	561	0.40	1.57	ξ(18,14)	299	0.21	0.26
ξ(18,33)	209	0.15	1.89	ξ(18,13)	571	0.41	-4.24
ξ(18,32)	87	0.06	0.24	ξ(18,12)	657	0.47	-1.63
ξ(18,31)	1136	0.81	7.85	ξ(18,11)	29	0.02	-1.12
ξ(18,30)	1395	1.00	4.33	ξ(18,10)	319	0.23	-0.88
ξ(18,29)	27	0.02	-0.2	ξ(18,9)	73	0.05	-1.6
ξ(18,28)	69	0.05	-0.14	ξ(18,8)	60	0.04	-0.72
ξ(18,27)	60	0.04	-0.13	ξ(18,7)	485	0.35	-3.48
ξ(18,26)	31	0.02	-0.2	ξ(18,6)	240	0.17	-0.15
ξ(18,25)	91	0.07	-0.05	ξ(18,5)	526	0.38	-16.8
ξ(18,24)	242	0.17	-4.25	ξ(18,4)	59	0.04	-1.39
ξ(18,23)	101	0.07	-0.54	ξ(18,3)	554	0.40	-3.8
ξ(18,22)	228	0.16	-1.07	ξ(18,2)	112	0.08	-0.31
ξ(18,21)	139	0.10	-0.48	ξ(18,1)	1186	0.85	-2.63

Table S4. Individual coupling (ξ) and relative coupling (ξ_R) strength of O-H in plane bending (ξ_{18}) with rest of the normal modes along with anharmonic corrections ($\Delta v = v_{diagonal} - v_{VSCF-PT2}$ in cm⁻¹) for butanol.

Pair-wise	Ę	ξr	Δυ	Pair-wise	ξ	ξr	Δυ
Coupling				coupling			
ξ(37,39)	1	0.00	0.01	ξ(37,19)	136	0.02	1.14
ξ(37,38)	6377	0.77	-5.93	ξ(37,18)	97	0.01	1.53
ξ(37,36)	1440	0.17	-9.12	ξ(37,17)	657	0.08	5.01
ξ(37,35)	1254	0.15	-8.87	ξ(37,16)	423	0.05	3.16
ξ(37,34)	8262	1.00	36.13	ξ(37,15)	684	0.08	5.92
ξ(37,33)	7648	0.93	46.23	ξ(37,14)	34	0.00	0.25
ξ(39,32)	1900	0.23	7.07	ξ(37,13)	109	0.01	0.91
ξ(37,31)	244	0.03	-0.35	ξ(37,12)	156	0.02	1.01
ξ(37,30)	70	0.01	-0.65	ξ(37,11)	1259	0.15	10.24
ξ(37,29)	21	0.00	0.65	ξ(37,10)	982	0.12	8.35
ξ(37,28)	1021	0.12	10.96	ξ(37,9)	1185	0.14	9.7
ξ(37,27)	1366	0.17	11.17	ξ(37,8)	1113	0.13	9.51
ξ(37,26)	1464	0.18	11.19	ξ(37,7)	248	0.03	1.9
ξ(37,25)	846	0.10	5.91	ξ(37,6)	209	0.03	1.45
ξ(37,24)	40	0.00	0.26	ξ(37,5)	50	0.01	0.14
ξ(37,23)	1949	0.24	20.11	ξ(37,4)	4688	0.57	59.12
ξ(37,22)	412	0.05	3.12	ξ(37,3)	560	0.07	4.29
ξ(37,21)	376	0.05	3.26	ξ(37,2)	2594	0.31	25.14
ξ(37,20)	79	0.01	2.33	ξ(37,1)	2631	0.32	23.06

Table S5. Individual coupling (ξ) and relative coupling (ξ_R) strength of CH₃ stretching (ξ_{37}) with rest of the normal modes along with anharmonic corrections ($\Delta \upsilon = \upsilon_{diagonal} - \upsilon_{VSCF-PT2}$ in cm⁻¹) for butanol.

Pair-wise	ξ	ξr	Δυ	Pai	ir-wise	ξ	ξr	Δυ
coupling				cou	upling			
ξ(27,39)	2	0.00	0.02	ξ(2	7,19)	9	0.00	-0.06
ξ(27,38)	3891	1.00	23.56	ξ(2	7,18)	60	0.02	-0.09
ξ(27,37)	1366	0.35	10.83	ξ(2	7,17)	19	0.00	-0.5
ξ(27,36)	131	0.03	1.28	ξ(2	7,16)	14	0.00	-0.29
ξ(27,35)	78	0.02	0.69	ξ(2	7,15)	41	0.01	-0.83
ξ(27,34)	685	0.18	2.76	ξ(2	7,14)	22	0.01	0.16
ξ(27,33)	198	0.05	8.38	ξ(2	7,13)	3	0.00	-0.05
ξ(27,32)	46	0.01	0.66	ξ(2	7,12)	28	0.01	-0.06
ξ(27,31)	1	0.00	0.01	ξ(2	7,11)	51	0.01	-1.06
ξ(27,30)	3	0.00	0.04	ξ(2	7,10)	65	0.02	-1.57
ξ(27,29)	68	0.02	0.06	ξ(2	7,9)	60	0.02	-0.92
ξ(27,28)	448	0.12	0.43	ξ(2	7,8)	18	0.00	-0.37
ξ(27,26)	520	0.13	0.54	ξ(2	7,7)	40	0.01	-0.44
ξ(27,25)	334	0.09	0.12	ξ(2	7,6)	67	0.02	-0.34
ξ(27,24)	8	0.00	0	ξ(2	7,5)	10	0.00	-0.05
ξ(27,23)	105	0.03	-0.08	ξ(2	7,4)	388	0.10	-17.64
ξ(27,22)	90	0.02	0.12	ξ(2	7,3)	55	0.01	-0.83
ξ(27,21)	4	0.00	-0.07	ξ(2	7,2)	326	0.08	-6.11
ξ(27,20)	50	0.01	-0.04	ξ(2	7,1)	101	0.03	-0.4

Table S6. Individual coupling (ξ) and relative coupling (ξ_R) strength of C-H bending (ξ_{27}) with rest of the normal modes along with anharmonic corrections ($\Delta \upsilon = \upsilon_{diagonal} - \upsilon_{VSCF-PT2} \text{ cm}^{-1}$) for butanol.

Figure S8. Normal mode analysis of C1-H2H3H4 bending (Mode **27**) of butanol. The upper and lower panels represent some weakly coupled and strongly coupled normal modes, respectively, with C-H bending. Displacements during different modes are given in different colors.

Table S7. Comparative study of different relative coupling (ξ_R) values for Mode 39 (O-H stretching), Mode 37 (CH₃ stretching), Mode 18 (O-H bending) and Mode 27 (CH₃ bending) of Butanol. Some selected normal modes of different relative coupling values are considered.

O-H str.	O-H str. (Mode 39) O-H str. (Mode 39) O-H in plane bend, CH2 bend (H12-C11-H13)] (Mode 18)		nd, CH2 11-H13)]	C-H str. [CH2 (Mode 3	str. (H4- 7)	-C1-H3)]	C-H ben C1-H2-I (Mode 2	d H3-H4 7)	bending			
Mode	ξ	ξr	Mode	w	ξr	Mode	ξ	ξ_R	Mode	ξ	ξ_R	
5	3092	1.00	30	1395	1.00	34	8262	1.00	38	3891	1.00	
O-H out	of plane be	ne bending CH ₂ symmetric. Str. (H12 C11H13)			str. (H12-	CH ₂ symmetric. str (H9-C8 H10, CH3 str.)			CH ₃ ant	CH ₃ anti-symmetric. Str.		
18	1188	0.38	39	1188	0.85	33	7648	0.93	37	1366	0.35	
O-H in pl (H12-C1	ane bend, (1-H13)	CH ₂ bend	O-H str.			CH ₂ sym H10, CH	metric. str 3 str.	(H9-C8-	CH ₃ syn C1-H4)	nmetric.	Str. (H3-	
13	572	0.19	31	1136	0.81	38	6377	0.77	34	685	0.18	
O-H in plane bending, H10- CH ₂ anti-symmetric. str (H12-C11H13)			CH3 anti-	-symmetric	. str.	CH ₂ syr C8-H10, H3 str.)	nmetric. C	str (H9-				
20	422	0.14	13	571	0.41	4	4688	0.57	26	520	0.13	
O-H in J H6-H7 be bending	in plane bending, C5- O-H in plane bending, CH 7 bending, C8-H9-H10 bending (H9-C8-H10) ng			CH ₃ twis	ting		CH ₂ C8H10)	scissoring	; (H9-			
24	396	0.13	15	349	0.25	32	1900	0.23	28	448	0.12	
O-H in j bending (plane bend (H12-C11-	ling, CH ₂ H13)	O-H in pl bending, (H3-C1-I H12-C11	lane bend CH ₂ H4, H -H13)	ling, CH3 bending l6C5-H7,	CH ₂ sym H7)	metric. str.	(H6-C5-	CH ₃ , CH scissorin	I ₂ , CH ₂ g	and CH ₂	
12	410	0.13	24	242	0.17	23	1949	0.24	4	388	0.10	
C1-C5 st in bendin	r., C8-C11 ¹ g	str., O-H	O-H in H12C11-	plane H13 ben	bending, ding	CH ₃ bend	CH ₃ bending			CH ₃ twisting		
15	342	0.11	32	87	0.06	26	1464	0.18	25	334	0.09	
C5-C8 s bending,	tr., O-H CH ₃ bendi	in plane ing	CH ₂ sym C5-H7)	nmetric.	Str. (H6-	CH ₃ and (H9-C8H	d CH ₂ sc [10]	issoring,	CH ₃ , C H6-H7 H10sciss	l-H2-H3- and oring	H4, C5- C8-H9-	
37	1	0.00	37	97	0.07	36	1440	0.17	2	326	0.08	
CH ₂ str.	(H4-C1-H	3)	CH ₃ sym C1-H4)	metric.	Str. (H3-	CH ₂ anti- C8-H10)	symmetric	. str (H9-	Chain To	rsional m	ıode	
36	1	0.00	11	29	0.02	30	70	0.01	33	198	0.05	
CH ₂ str. (H9-C8-H1	0)	CH ₃ twis (H6-C5-I H12-C11	ting, CH 17, H9 -H13)	2 twisting -C8-H10,	CH ₂ syn C11H13)	nmetric. s	tr (H12-	CH ₂ syn C8-H10,	CH ₂ symmetric. str (H9- C8-H10, CH3 str.		
35	10	0.00	27	60	0.04	13	109	0.01	23	105	0.03	
CH ₂ str. (H6-C5-H7	')	CH ₃ bend	ling		O-H in p bending	olane bend (H9-C8-H1	ing, CH ₂ 0)	CH ₃ bending			

For example, the strongest coupling with O-H stretching is O-H outof-plane bending (mode **5**, $\xi_R = 1.0$) followed by chain torsion (mode **1**, $\xi_R = 0.40$). Further, mode **18**, which is O-H in-plane + CH₂ (H12-C11-H13) bending of immediate neighbor posit strong coupling ($\xi_R =$ 0.38) while mode **20** which is O-H + next two -CH₂ (H9-C8-H10 + H6-

C5-H7) bending posits weak coupling ($\xi_R \approx 0.0$) due to spacing out from each other.

					1
Modes	ξ	ξr	Modes	ξ	ξ _R
93	27461	1.00	48	3	0.00
			47	82	0.00
91	6983	0.25	46	3	0.00
90	20542	0.75	45	13	0.00
89	28	0.00	44	4	0.00
88	5	0.00	43	26	0.00
87	11	0.00	42	336	0.01
86	4	0.00	41	18	0.00
85	2	0.00	40	172	0.01
84	27	0.00	39	1927	0.07
83	7	0.00	38	257	0.01
82	68	0.00	37	299	0.01
81	19	0.00	36	1573	0.06
80	3	0.00	35	935	0.03
79	75	0.00	34	68	0.00
78	120	0.00	33	172	0.01
77	170	0.01	32	300	0.01
76	39	0.00	31	128	0.00
75	2341	0.09	30	149	0.01
74	33	0.00	29	307	0.01
73	2	0.00	28	120	0.00
72	175	0.01	27	280	0.01
71	112	0.00	26	2465	0.09
70	9	0.00	25	84	0.00
69	7	0.00	24	338	0.01
68	6	0.00	23	665	0.02
67	0	0.00	22	1231	0.04
66	312	0.01	21	454	0.02
65	24	0.00	20	219	0.01
64	282	0.01	19	118	0.00
63	120	0.00	18	141	0.01
62	110	0.00	17	137	0.00
61	31	0.00	16	53	0.00
60	78	0.00	15	84	0.00
59	71	0.00	14	143	0.01
58	5	0.00	13	71	0.00
57	1686	0.06	12	172	0.01
56	23	0.00	11	455	0.02
55	140	0.01	10	67	0.00
54	93	0.00	9	172	0.01
53	9	0.00	8	300	0.01
52	2	0.00	7	128	0.00
51	9	0.00	6	149	0.01
50	27	0.00	5	307	0.01
49	34	0.00	4	120	0.00

Table S8. Individual (ξ); relative coupling (ξ_R) strengths of anti-symmetric N-H stretching (mode **92**) with rest of the normal modes for NATA (three smallest torsional modes are excluded for numerical stability).

Mode	Ł	ξR	Mode	بح	ξr	Mode	Ľ	ξr
93	1453	0.07	63	179	0.01	33	8203	0.40
92	20542	1.00	62	125	0.01	32	1101	0.05
91	608	0.03	61	64	0.00	31	1049	0.05
90			60	171	0.01	30	7296	0.36
89	23	0.00	59	22	0.00	29	5109	0.25
88	12	0.00	58	495	0.02	28	226	0.01
87	19	0.00	57	36	0.00	27	375	0.02
86	13	0.00	56	297	0.01	26	1331	0.06
85	11	0.00	55	29	0.00	25	218	0.01
84	140	0.01	54	83	0.00	24	911	0.04
83	43	0.00	53	42	0.00	23	1213	0.06
82	34	0.00	52	18	0.00	22	846	0.04
81	22	0.00	51	5995	0.29	21	1388	0.07
80	5	0.00	50	99	0.00	20	9334	0.45
79	357	0.02	49	21	0.00	19	130	0.01
78	391	0.02	48	76	0.00	18	70	0.00
77	829	0.04	47	13	0.00	17	406	0.02
76	29	0.00	46	9	0.00	16	4918	0.24
75	8103	0.39	45	102	0.00	15	769	0.04
74	14	0.00	44	93	0.00	14	223	0.01
73	52	0.00	43	60	0.00	13	301	0.01
72	578	0.03	42	11	0.00	12	736	0.04
71	3	0.00	41	409	0.02	11	11	0.00
70	120	0.01	40	11	0.00	10	643	0.03
69	57	0.00	39	30	0.00	9	352	0.02
68	46	0.00	38	4	0.00	8	225	0.01
67	7	0.00	37	91	0.00	7	418	0.02
66	42	0.00	36	1850	0.09	6	1264	0.06
65	86	0.00	35	124	0.01	5	479	0.02
64	240	0.01	34	915	0.04	4	522	0.03

Table S9. Individual (ξ) and relative (ξ_R) coupling strength of symmetric N-H stretching (ξ_{90}) with rest of the normal modes for NATA molecule.

Mode	ξ	ξr	Mode	ξ	ξr	Mode	ξ	ξr
93	2641	0.38	63	4	0.00	33	57	0.01
92	6983	1.00	62	56	0.01	32	38	0.01
91			61	17	0.00	31	29	0.00
90	608	0.09	60	178	0.03	30	48	0.01
89	48	0.01	59	7	0.00	29	43	0.01
88	78	0.01	58	460	0.07	28	1438	0.21
87	32	0.00	57	70	0.01	27	34	0.00
86	101	0.01	56	755	0.11	26	17	0.00
85	152	0.02	55	179	0.03	25	15	0.00
84	497	0.07	54	45	0.01	24	19	0.00
83	59	0.01	53	14	0.00	23	559	0.08
82	19	0.00	52	47	0.01	22	1703	0.24
81	58	0.01	51	62	0.01	21	873	0.13
80	184	0.03	50	62	0.01	20	202	0.03
79	229	0.03	49	7	0.00	19	21	0.00
78	1	0.00	48	45	0.01	18	44	0.01
77	100	0.01	47	4	0.00	17	82	0.01
76	38	0.01	46	22	0.00	16	45	0.01
75	46	0.01	45	51	0.01	15	45	0.01
74	26	0.00	44	133	0.02	14	140	0.02
73	13	0.00	43	158	0.02	13	24	0.00
72	700	0.10	42	21	0.00	12	45	0.01
71	2	0.00	41	8	0.00	11	19	0.00
70	166	0.02	40	63	0.01	10	50	0.01
69	103	0.01	39	15	0.00	9	12	0.00
68	9	0.00	38	27	0.00	8	65	0.01
67	42	0.01	37	31	0.00	7	91	0.01
66	53	0.01	36	43	0.01	6	396	0.06
65	50	0.01	35	20	0.00	5	242	0.03
64	140	0.02	34	113	0.02	4	31	0.00

Table S10. Individual (ξ) and relative (ξ_R) coupling strength of ϕ NH stretching (ξ_{91}) with rest of the normal modes for NATA molecule.

Mode	ξ	ξr	Mode	ξ	ξr	Mode	ξ	ξr
93			63	142	0.01	33	44	0.00
92	27461	1.00	62	153	0.01	32	18	0.00
91	2641	0.10	61	116	0.00	31	17	0.00
90	1497	0.05	60	88	0.00	30	73	0.00
89	3161	0.12	59	202	0.01	29	56	0.00
88	24	0.00	58	79	0.00	28	7	0.00
87	44	0.00	57	350	0.01	27	176	0.01
86	124	0.00	56	8	0.00	26	389	0.01
85	5	0.00	55	103	0.00	25	111	0.00
84	2	0.00	54	237	0.01	24	19	0.00
83	1	0.00	53	26	0.00	23	55	0.00
82	81	0.00	52	18	0.00	22	83	0.00
81	10	0.00	51	150	0.01	21	88	0.00
80	4	0.00	50	45	0.00	20	546	0.02
79	2	0.00	49	258	0.01	19	219	0.01
78	27	0.00	48	368	0.01	18	1140	0.04
77	7	0.00	47	2	0.00	17	2044	0.07
76	183	0.01	46	4	0.00	16	1296	0.05
75	57	0.00	45	35	0.00	15	808	0.03
74	94	0.00	44	61	0.00	14	148	0.01
73	106	0.00	43	17	0.00	13	187	0.01
72	21	0.00	42	18	0.00	12	37	0.00
71	321	0.01	41	37	0.00	11	386	0.01
70	4	0.00	40	16	0.00	10	22	0.00
69	60	0.00	39	63	0.00	9	23	0.00
68	24	0.00	38	41	0.00	8	106	0.00
67	3	0.00	37	29	0.00	7	16	0.00
66	555	0.02	36	50	0.00	6	19	0.00
65	6	0.00	35	52	0.00	5	207	0.01
64	109	0.00	34	44	0.00	4	8	0.00

Table S11. Individual (ξ) and relative (ξ_R) coupling strength of Indole N-H stretching (ξ_{93}) with rest of the normal modes for NATA molecule.

Mode	ξ	ξr	Mode	×	ξr		Mode	ξ	ξr
93	27	0.01	63	1013	0.46	Γ	33	461	0.21
92	120	0.05	62	417	0.19	Γ	32	150	0.07
91	1	0.00	61	11	0.00	Γ	31	409	0.19
90	391	0.18	60	410	0.19	Γ	30	288	0.13
89	24	0.01	59	177	0.08	Γ	29	193	0.09
88	4	0.00	58	422	0.19	Γ	28	31	0.01
87	9	0.00	57	191	0.09		27	135	0.06
86	6	0.00	56	438	0.20		26	152	0.07
85	8	0.00	55	173	0.08		25	49	0.02
84	13	0.01	54	487	0.22		24	87	0.04
83	3	0.00	53	144	0.07		23	450	0.20
82	34	0.02	52	100	0.05		22	59	0.03
81	17	0.01	51	2200	1.00		21	215	0.10
80	7	0.00	50	10	0.00		20	762	0.35
79	145	0.07	49	104	0.05		19	48	0.02
78			48	172	0.08		18	16	0.01
77	220	0.10	47	67	0.03		17	30	0.01
76	38	0.02	46	37	0.02		16	504	0.23
75	1158	0.53	45	141	0.06		15	74	0.03
74	14	0.01	44	264	0.12		14	185	0.08
73	118	0.05	43	361	0.16		13	63	0.03
72	352	0.16	42	8	0.00		12	187	0.08
71	4	0.00	41	194	0.09		11	113	0.05
70	12	0.01	40	12	0.01		10	99	0.04
69	84	0.04	39	65	0.03		9	130	0.06
68	233	0.11	38	4	0.00		8	103	0.05
67	24	0.01	37	108	0.05		7	30	0.01
66	14	0.01	36	471	0.21		6	75	0.03
65	11	0.01	35	69	0.03		5	1282	0.58
64	781	0.35	34	28	0.01		4	32	0.01

Table S12. Individual (ξ) and relative (ξ_R) coupling strength of C=O stretching (ξ_{78}) with rest of the normal modes for NATA molecule.

Mode	ξ	ξr	Mode	٤	ξr	Mode	٤	ξr
93	150	0.03	63	221	0.04	33	491	0.08
92	1686	0.28	62	415	0.07	32	126	0.02
91	62	0.01	61	8	0.00	31	174	0.03
90	5995	1.00	60	561	0.09	30	331	0.06
89	34	0.01	59	88	0.01	29	91	0.02
88	11	0.00	58	2421	0.40	28	16	0.00
87	8	0.00	57	23	0.00	27	178	0.03
86	12	0.00	56	141	0.02	26	142	0.02
85	10	0.00	55	52	0.01	25	25	0.00
84	19	0.00	54	106	0.02	24	156	0.03
83	9	0.00	53	54	0.01	23	183	0.03
82	34	0.01	52	70	0.01	22	185	0.03
81	203	0.03	51			21	487	0.08
80	2	0.00	50	61	0.01	20	612	0.10
79	330	0.06	49	126	0.02	19	54	0.01
78	2200	0.37	48	99	0.02	18	28	0.00
77	71	0.01	47	39	0.01	17	142	0.02
76	32	0.01	46	28	0.00	16	327	0.05
75	744	0.12	45	125	0.02	15	378	0.06
74	56	0.01	44	33	0.01	14	50	0.01
73	132	0.02	43	33	0.01	13	175	0.03
72	70	0.01	42	4	0.00	12	299	0.05
71	2	0.00	41	140	0.02	11	8	0.00
70	24	0.00	40	4	0.00	10	58	0.01
69	25	0.00	39	20	0.00	9	227	0.04
68	23	0.00	38	11	0.00	8	27	0.00
67	3	0.00	37	36	0.01	7	75	0.01
66	36	0.01	36	96	0.02	6	86	0.01
65	39	0.01	35	12	0.00	5	1286	0.21
64	2129	0.36	34	34	0.01	4	22	0.00

Table S13. Individual (ξ) and relative (ξ_R) coupling strength of NH₂ bending (ξ_{51}) with rest of the normal modes for NATA molecule.

Table S14.	Comparative study of ξ_{max}	for selected N-H	stretching, N-H	bending and C=O	stretching for N	JATA
molecule.						

Target Mode (ω)	Mode with maximum coupling	ξmax
93 (3684)	92	27461
92 (3683)	93	27461
91 (3599)	92	6983
90 (3473)	92	20542
51 (1135)	90	5995
78 (1755)	51	2200
77 (1714)	58	2677

Table S15. Comparisons of computed anharmonic frequencies (in cm⁻¹) and intensities (km mol⁻¹) of different VTA guided PESs considering various sets of normal modes by analysing relative atomic displacement (q_R) and relative coupling (ξ_R) with diagonal and full PES for Symmetric-NH stretching (Mode **90**), ϕ N-H (Mode **91**), Anti-symmetric- NH₂ (Mode **92**), Indole N-H stretching (Mode **93**), C=O stretching (Mode **78**), NH₂ bending (Mode **51**), and C=O stretching (Mode **77**) for NATA molecule. The bold number in PES type represent target mode. Here ω_{HO} and I_{HO} represents corresponding harmonic frequencies (in cm⁻¹) and intensities (km mol⁻¹), respectively.

Mode 90: Symmetric N	H stretch	ing (ωно :	= 3473 ci	m ⁻¹	$, I_{\rm HO} = 144.5)$			
PES type	qr	Ю N-H	I _{N-H}		PES type	ξr	Ю N-H	IN-H
Diagonal		3359	156.4		Diagonal		3359	156.4
90 ,75,51,33,30	≥ 0.5	3338	151.2		92, 90 ,75,51,33,30	≥ 0.2	3235	150.3
					,29,20,16			
90 ,75,51,33,30	≥ 0.4	3338	151.2		92, 90 ,75,51,36,33	≥ 0.1	3235	150.1
					,30,29,20,16			
92, 90 ,75,51,33,30,29,2	≥ 0.3	3257	151.6		93,92, 90 ,75,51,36	≥ 0.05	3220	152.5
0					,33,32,31,30,29,2			
					6,23,21,20,16,6			
92, 90 ,75,51,36,33,30,2	≥ 0.2	3234	149.6		93,92,91, 90 ,77,75	≥ 0.03	3217	150.8
9,21,20,16,15					,72,51,36,34,33,3			
					2,31,30,29,26,24,			
					23,22,21,20,16,15			
					,12,10,6,4			
Full PES		3255	147.8		Full PES		3255	147.8
Mode 91: ϕ N-H stretcl	ning ($\omega_{ m HC}$)= 3599 cn	1 ⁻¹ , Іно =	15	9.3)		1	
PES type	qr	Ю N-H	IN-H		PES type	ξr	Ю N-H	I _{N-H}
Diagonal		3446	166.2		Diagonal		3446	166.2
91 ,72,28,22	≥ 0.5	3414	162.7		93,92, 91 ,28,22	≥ 0.2	3418	163.4
91 ,72,58,56,28,22	≥ 0.4	3402	162.2		93,92, 91 ,72,56,28	≥ 0.1	3402	161.8
					,22,21			
91 ,72,58,56,28,22,21	≥ 0.3	3396	161.7		93,92, 91, 90,84,72	≥ 0.05	3397	161.2
					,58,56,28,23,22,2			
					1,6			
91 ,72,70,60,58,56,28,2	≥ 0.2	3387	161.2		93,92, 91, 90,84,80	≥ 0.03	3387	160.8
3,22,21,20					,79,72,60,58,56,5			
					5,28,23,22,21,20,			
		220.4	1.00.0		6,5 E 11 DEC		220.4	1 (0, 0
Full PES	• 111	3394	160.8	(0)	Full PES		3394	160.8
Mode 92: Anti-symmet	ric NH ₂ s	tretching	$(\omega_{\rm HO} = 3)$	683	5 cm^2 , $1_{\text{HO}} = 67.6$)	6	1	-
PES type	qr	Ю N-Н	I N-H		PES type	ξr	<i>ОN-Н</i>	I N-H
Diagonal		3651	62.8		Diagonal		3651	62.8
92,75,20,16	≥ 0.5	3517	64.7		93,92,91,90	≥ 0.2	3532	62.9
92,90,75,51,33,20,16	≥ 0.4	3472	64.8		93,92,91,90,75,20	≥ 0.1	3493	64.1
92 ,90,75,58,51,33,30,2	≥ 0.3	3463	64.7		93, 92 ,91,90,75,51	≥ 0.05	3465	64.1
0,16	> 0.0	2452	64.0		,33,30,20	> 0.02	2140	64.0
92,90,75,64,60,58,51,3	≥ 0.2	3453	64.8		93,92,91,90,75,51	≥ 0.03	3449	64.9
<u>3,31,30,29,21,20,16,12</u>		2455	64.6		,33,30,29,20,16		2455	61.6
Full PES		3455	04.0	T	Full PES		3455	64.6
Mode 95: Indole N-H st	tretching	$(\omega_{\rm HO} = 30)$		IHC) = 93.8)	6		-
PES type	q _R	<i>ЮМ-Н</i>			PES type	ξr	<i>ОN-H</i>	
Diagonal		3556	84.7		Diagonal		3556	84.7
93,17	≥ 0.5	3526	87.2		93,92	≥ 0.2	3543	84.1
93 ,66,17	≥ 0.4	3521	87.6		93 ,92,91,89	≥ 0.1	3544	84.1
93,66,57,49,48,26,18,1	≥ 0.3	3494	88.5		93 ,92,91,90,89,17	≥ 0.05	3509	87.0
7		0.425	0.0		,16		.	05
93,71,66,62,57,55,54,4	≥ 0.2	3485	89.2		93 ,92,91,90,89,18	≥ 0.03	3491	87.7
9,48,26,19,18,17,16				l l	,17,16,15			

02 02 76 74 71 66	> 0.1	2441	00.2				
93 , 92, 76, 74, 71, 66,	≥ 0.1	3441	89.3				
62, 59, 57, 55, 54, 53,							
49, 48, 44, 39, 27, 26,							
25, 19, 18, 17, 16, 15,							
11							
Full PES		3452	89.2	Full PES		3452	89.2
Mode 78: C=O stretchi	ng (ωно =	= 1755 cm	$^{-1}$, I _{HO} = 4	400.5)			
PES type	ПР	<i>₽с</i> -0	Ic-0	PES type	Ĕ₽	<i>DC-0</i>	Ic-0
Diagonal	4	1750	396.0	Diagonal		1750	396.0
78 51 23 21 15 14 13 0	>0.5	1737	305.8	78 75 64 63 56 54	> 0.2	1738	306.2
70 ,51,25,21,15,14,15,9	≥ 0.5	1757	395.0	51 26 22 22 20 1	<u>≥</u> 0.2	1750	590.2
,0,3				,51,50,55,25,20,1			
		1505	205.0	0,0	1	1501	2011
78,51,33,27,23,21,15,1	≥ 0.4	1735	395.9	90,78,77,75,72,68	≥ 0.1	1731	396.6
4,13,9,6,5				,64,63,62,60,58,5			
				6,54,51,44,43,36,			
				33,31,30,23,21,20			
				,16,5			
	≥ 0.3	1732	396.0				
78.51.36.33.31.30.27.2							
3.21.15.14.13.12.10.9.							
87654							
78 75 51 36 33 31 30 2	> 0.2	1733	396.3		1	1	
18,75,51,50,55,51,50,2	≥ 0.2	1755	390.5				
9,27,26,24,23,22,21,20							
,16,15,14,13,12,10,9,8,							
7,6,5,4							
Full PES		1723	396.8	Full PES		1723	396.8
Mode 51: NH ₂ bending	$(\omega_{\rm HO} = 1)$	1135 cm^{-1} ,	$\mathbf{I}_{\mathrm{HO}} = 0.8$	85)			
PES type	an a	1)	I	PFS type	ج	DN II	INT
I Lo type	Чк	UN-H	IN-H	I Lo type	SK	UN-11	1 / N - I
Diagonal	Чк	<u>ол-н</u> 1147	0.8	Diagonal	ŞK	1147	0.8
Diagonal 92,90,75, 51 ,33,30,29,2	≥ 0.5	0N-H 1147 1118	0.8 0.8	Diagonal 92,90,78,64,58, 51	≥ 0.2	1147 1115	0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0	≥ 0.5	<u>ол-н</u> 1147 1118	0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5	≥ 0.2	1147 1115	0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2	≥ 0.5 ≥ 0.4	0N-H 1147 1118 1118	0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58	≥ 0.2	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75 ,51 ,33,30,29,2 0	$\frac{\mathbf{q}\mathbf{k}}{\geq 0.5}$ ≥ 0.4	ON-H 1147 1118 1118	0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58	$ \geq 0.2 $ $ \geq 0.1 $	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0	≥ 0.5 ≥ 0.4	0N-H 1147 1118 1118 1118	0.8 0.8 0.8	Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0 29 21 20 16 15 12	≥ 0.5 ≥ 0.4 ≥ 0.3	ON-H 1147 1118 1118 1116	0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58 , 51 ,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0,29,21,20,16,15,12	≥ 0.5 ≥ 0.4 ≥ 0.3	0N-H 1147 1118 1118 1116 1116	0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58 , 51 ,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75, 51 ,36,34,3	$ \begin{array}{c} \mathbf{q} \mathbf{k} \\ \geq 0.5 \\ \geq 0.4 \\ \geq 0.3 \\ \geq 0.2 \end{array} $	0N-H 11147 1118 1118 1116 11116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58 , 51 ,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8 0.8 0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75, 51 ,36,34,3 3,32,31,30,29,26,23,21	$ \frac{q_R}{\geq 0.5} $ $ \geq 0.4 $ $ \geq 0.3 $ $ \geq 0.2 $	0N-H 1147 1118 1118 1116 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58 , 51 ,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75, 51 ,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12	$\frac{q_R}{\geq 0.5}$ $\frac{\geq 0.4}{\geq 0.3}$ $\frac{\geq 0.2}{\leq 0.2}$	0N-H 1147 1118 1118 1116 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58, 51 ,5 92,90,78,75,64,58 , 51 ,20,5	≥ 0.2 ≥ 0.1	1147 1115 1119	0.8
Diagonal 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,33,30,29,2 0 92,90,75, 51 ,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75, 51 ,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES		0N-H 1147 1118 1118 1116 1116 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5	≥ 0.2 ≥ 0.1	1147 11147 1115 1119 1119	0.8 0.8 0.8
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode		ол.н 1147 1118 1118 1116 1116 1116 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Fills type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6)	≥ 0.2 ≥ 0.1	1147 1115 1119 1119 1116	0.8 0.8 0.8
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type		0л.н 1147 1118 1118 1116 1116 1116 1116 1116 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Fill Fill Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type	$\xi_{\mathbf{R}}$ ≥ 0.2 ≥ 0.1 $\xi_{\mathbf{R}}$	0х-н 1147 1115 1115 1119 1119 1116 vc=o	0.8 0.8 0.8 0.8 0.8
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal		<u>ок.н</u> 1147 1118 1118 1116 1116 1116 1116 14 ст⁻¹, I vc=o 1709	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8	Fill Fill Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,5 92,90,78,7	$\xi_{\mathbf{R}}$ ≥ 0.2 ≥ 0.1 $\xi_{\mathbf{R}}$	0х-н 1147 1115 1115 1119 1119 1116 vc=o 1709	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7		0л.н 1147 1118 1118 1116	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5	$\frac{\xi_{R}}{\geq 0.2}$ $\frac{\xi_{R}}{\geq 0.2}$	0х-н 1147 1115 1115 1119 1119 1116 vc=o 1709 1697	0.8 0.8 0.8 0.8 0.8 0.8 Ic=0 231.8 232.0
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5		0N-H 11147 1118 1118 1116 1110 0 1699	$ \begin{array}{r} IN-H \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ Ic=0 \\ 231.8 \\ 232.3 \\ \end{array} $	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5	$\frac{\zeta_{R}}{\geq 0.2}$ ≥ 0.1 $\frac{\zeta_{R}}{\geq 0.2}$	0л-н 1147 1115 1115 1119 1119 1116 vc=o 1709 1697	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2		0N-H 11147 1118 1118 1116 1109 1699 1699	$ \begin{array}{r} IN-H \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ Ic=0 \\ 231.8 \\ 232.3 \\ 232.5 \\ 232.5 \\ \hline $	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5	$\frac{\zeta_{R}}{\geq 0.2}$ ≥ 0.1 $\frac{\zeta_{R}}{\geq 0.2}$ ≥ 0.2 ≥ 0.1	UN-H 1147 1115 1115 1115 1119 1119 1116 Uc=0 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5		0N-H 11147 1118 1118 1116 1110 0c=0 1709 1699 1699	$ \begin{array}{r} IN-H \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ Ic=0 \\ 231.8 \\ 232.3 \\ 232.5 \\ 232.5 \\ $	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2 ≥ 0.1	UN-H 1147 1115 1115 1115 1119 1119 1116 vc=o 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5	q_R ≥ 0.5 ≥ 0.4 ≥ 0.3 ≥ 0.2 77; ω=17 q_R ≥ 0.5 ≥ 0.4	ол.н 1147 1118 1118 1116 1110 0c=0 1709 1699 1699	$ \begin{array}{r} IN-H \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 231.8 \\ 232.3 \\ 232.5 \\ 232.5 \\ $	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23	$\frac{\zeta_{R}}{\geq 0.2}$ ≥ 0.1 $\frac{\zeta_{R}}{\geq 0.2}$ ≥ 0.1	UN-H 1147 1115 1115 1115 1119 1119 1116 UC=0 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5		0N-H 1147 1118 1118 1116 1110 0c=0 1699 1699	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2 ≥ 0.1	UN-H 1147 1115 1115 1115 1119 1119 1116 vc=o 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5	$\frac{q_R}{\geq 0.5}$ ≥ 0.4 ≥ 0.3 ≥ 0.2 $77; \omega = 17$ q_R ≥ 0.5 ≥ 0.4	0N-H 11147 1118 1118 1116 1110 0c=0 1709 1699 1699 1699	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5	PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2	0х-н 1147 1115 1115 1115 1119 1119 1119 1119 1116 vc=o 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,22,22,20,16,15,12		ол.н 1147 1118 1118 1116 1110 0c=0 1709 1699 1699 1700	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7	PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2 ≥ 0.1	UN-H 1147 1115 1115 1119 1119 1119 1116 vc=o 1709 1697 1696	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,23,22,20,16,15,13,12 10,07,6,5		ол.н 1147 1118 1118 1116 1110 0c=0 1709 1699 1699 1700	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7	PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2 ≥ 0.1	0N-H 1147 1115 1115 1119 1119 1119 1110 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,23,22,20,16,15,13,12 ,10,9,7,6,5,4	$\frac{q_R}{\geq 0.5}$ ≥ 0.4 ≥ 0.3 ≥ 0.2 $77; \omega = 17$ q_R ≥ 0.5 ≥ 0.4 ≥ 0.3	ол.н 1147 1118 1118 1116 1110 0c=0 1699 1699 1700	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7	PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1	0N-H 1147 1115 1115 1119 1119 1110 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,23,22,20,16,15,13,12 ,10,9,7,6,5,4 77,75,58,56,45,44,43,3		ол.н 1147 1118 1118 1116 1110 0 1699 1697	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7 232.9	PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\boldsymbol{\xi}_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2	0N-H 1147 1115 1115 1119 1119 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,23,22,20,16,15,13,12 ,10,9,7,6,5,4 77,75,58,56,45,44,43,3 7,36,31,29,28,27,26,24		<i>bn.H</i> 11147 1118 1118 1116 1110 1699 1699 1700 1697	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7 232.9	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) PES type Diagonal 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\xi_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.1 $\frac{\xi_{\mathbf{R}}}{\geq 0.2}$ ≥ 0.2	0N-H 1147 1115 1115 1119 1119 1119 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,2 4,23,22,20,16,15,13,12 ,10,9,7,6,5,4 77,75,58,56,45,44,43,3 7,36,31,29,28,27,26,24 ,23,22,21,20,16,15,14,		<i>bn.H</i> 11147 1118 1118 1116 1110 0 1699 1697 1697	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7 232.9	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\xi_{R}}{\geq 0.2}$ ≥ 0.1 $\frac{\xi_{R}}{\geq 0.2}$ ≥ 0.2	0N-H 1147 1115 1115 1119 1119 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5
Diagonal 92,90,75,51,33,30,29,2 0 92,90,75,51,33,30,29,2 0 92,90,75,51,36,33,32,3 0,29,21,20,16,15,12 92,90,77,75,51,36,34,3 3,32,31,30,29,26,23,21 ,20,16,15,12 Full PES C=O stretching (Mode PES type Diagonal 77,43,28,23,16,13,10,7 ,6,5 77,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,56,45,43,28,27,26,23,2 0,16,13,10,7,6,5 77,558,56,45,44,43,3 7,36,31,29,28,27,26,24 ,23,22,21,20,16,15,13,12 ,10,9,7,6,5,4 77,75,58,56,45,44,43,3 7,36,31,29,28,27,26,24 ,23,22,21,20,16,15,14, 13,12,10,9,8,7,6,5,4		<i>bN-H</i> 11147 1118 1118 1116 1699 1697 1697	IN-H 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.3 232.5 232.7 232.9	Full PES 6) PES type Diagonal 92,90,78,64,58,51 ,5 92,90,78,75,64,58 ,51,20,5 Full PES 6) 90,77,75,72,70,58 ,56,45,44,43,20 90,77,75,72,70,65 ,61,60,58,56,54,5 0,45,44,43,29,23, 22,20,16	$\frac{\xi_{R}}{\geq 0.2}$ ≥ 0.1 $\frac{\xi_{R}}{\geq 0.2}$ ≥ 0.2	0N-H 1147 1115 1115 1119 1119 1110 11110	0.8 0.8 0.8 0.8 0.8 0.8 0.8 231.8 232.0 232.5

Figure S9a. Normal mode analysis of Anti-symmetric NH_2 stretching (Mode **92**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with N-H stretching. Displacements during different modes are given in different colors, where normal mode displacement of H24 atom is taken as reference.

Figure S9b. Normal mode analysis of Indole N-H stretching (Mode **93**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with N-H stretching. Displacements during different modes are given in different colors, where normal mode displacement of H14 atom is taken as reference.

Figure S9c. Normal mode analysis of C=O stretching (Mode **78**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with C=O stretching. Displacements during different modes are given in different colors, where normal mode displacement of O22 atom is taken as reference.

Figure S9d. Normal mode analysis of NH₂ bending (Mode **51**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with NH₂ bending. Displacements during different modes are given in different colors, where normal mode displacement of H25 atom is taken as reference.

Figure S9e. Normal mode analysis of Symmetric N-H stretching (Mode **90**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with N-H stretching. Displacements during different modes are given in different colors, where normal mode displacement of H25 atom is taken as reference.

Figure S9f. Normal mode analysis of ϕ N-H stretching (Mode **91**) of NATA. The upper and lower panels represent some weakly and strongly coupled normal modes, respectively, with ϕ N-H stretching. Displacements during different modes are given in different colors, where normal mode displacement of H27 atom is taken as reference.