Carbon-sulfur bond elongation is the promoting reaction coordinate in the efficient sub-

nanosecond intersystem crossing in thianaphthene derivatives

Cameron Griffith, Erqian Mao, Sean J. Hoehn, Sarah Krul and Carlos E. Crespo-Hernández*

Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106,

United States; * E-mail: cxc302@case.edu

Supplementary Information

Figure S1. Normalized fluorescence spectra of thianaphene in acetonitrile at concentrations where monomer emission is only observed ($< 7 \times 10^{-5}$ M) and where aggregates or excimer emission is observed ($> 7 \times 10^{-5}$ M).

Figure S2. Evolution associated difference spectra of thianaphthene in cyclohexane at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S3. Evolution associated difference spectra of thianaphthene in acetonitrile at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S4. Evolution associated difference spectra of 2-methylbenzothiophene in cyclohexane at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S5. Evolution associated difference spectra of 2-methylbenzothiophene in acetonitrile at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S6. Evolution associated difference spectra of 3-methylbenzothiophene in cyclohexane at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S7. Evolution associated difference spectra of 3-methylbenzothiophene in acetonitrile at excitation of a) 266 nm and b) 290 nm were obtained from global and target analysis. The break is included to remove the overtone signal that comes from the excitation source.

Figure S8. Representative kinetic traces of varying concentrations of thianaphthene in cyclohexane at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 4-component model.

Figure S9. Representative kinetic traces of varying concentrations of thianaphthene in acetonitrile at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 3-component model.

Figure S10. Representative kinetic traces of varying concentrations of 2-methylbenzothiophene in cyclohexane at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 4-component model for 266 nm and a 3-component model for 290 nm.

Figure S11. Representative kinetic traces of varying concentrations of 2-methylbenzothiophene in acetonitrile at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 3-component model for 266 nm and a 2-component model for 290 nm.

Figure S12. Representative kinetic traces of varying concentrations of 3-methylbenzothiophene in cyclohexane at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 4-component model for 266 nm and a 3-component model for 290 nm.

Figure S13. Representative kinetic traces of varying concentrations of 3-methylbenzothiophene in acetonitrile at excitation of a) 266 nm and b) 290 nm performed with Glotaran using a 3-component model for 266 nm and a 2-component model for 290 nm.

Table S1. Vertical excitation energies, electronic structure, and oscillator strengths of TN in acetonitrile at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State					Elec	tron	ic Stru	icture					VEE/eV	f(r)
S1(ππ*)	Н	\rightarrow	L	0.49;	H-1	\rightarrow	L	0.21;	Н	\rightarrow	L+1	0.16;	4.76	0.0835
S2(ππ*)	Н	\rightarrow	L+1	0.47;	Н	\rightarrow	L	0.33;	H-1	\rightarrow	L+1	0.14;	4.98	0.0417
S₃(πσ*)	H-1	\rightarrow	L+2	0.92;									5.35	0.0000
S4(ππ*)	H-1	\rightarrow	L	0.50;	н	\rightarrow	L+1	0.27;					5.68	0.4748
T ₁ (ππ*)	н	\rightarrow	L	0.83;									3.42	
Τ2(ππ*)	н	\rightarrow	L+1	0.71;									4.12	
Τ₃(ππ*)	H-1	\rightarrow	L	0.77;	н	\rightarrow	L	0.11;					4.20	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.75;	Н	\rightarrow	L+1	0.13;					4.56	
Τ₅(ππ*)	н	\rightarrow	L+5	0.47;	H-2	\rightarrow	L	0.29;					4.96	
Τ ₆ (πσ*)	H-1	\rightarrow	L+2	0.81;									5.08	

Table S2. Vertical excitation energies, electronic structure, and oscillator strengths of TN in cyclohexane at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S₁(ππ*)	н	\rightarrow	1	0.53.	H-1	\rightarrow	1	0.20.	н	\rightarrow	1+1	0 14.	4 74	0 0912
51(101)		,	-	0.00,		,	-	0.20,		,	L · L	0.11,	, 1	0.0312
S2(ππ*)	Н	\rightarrow	L+1	0.48;	Η	\rightarrow	L	0.30;	H-1	\rightarrow	L+1	0.16;	4.97	0.0415
S₃(πσ*)	H-1	\rightarrow	L+2	0.92;									5.29	0.0000
S4(ππ*)	H-1	\rightarrow	L	0.50;	н	\rightarrow	L+1	0.29;					5.65	0.5325
T ₁ (ππ*)	н	\rightarrow	L	0.82;									3.41	
T ₂ (ππ*)	н	\rightarrow	L+1	0.70;									4.11	
T ₃ (ππ*)	H-1	\rightarrow	L	0.76;	Н	\rightarrow	L	0.10;					4.18	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.75;	Н	\rightarrow	L+1	0.13;					4.56	
T ₅ (ππ*)	Н	\rightarrow	L+5	0.47;	H-2	\rightarrow	L	0.29;					4.95	
T ₆ (πσ*)	H-1	\rightarrow	L+2	0.82;									5.03	

Table S3. Vertical excitation energies, electronic structure, and oscillator strengths of 2MBT invacuum at ground state minimum geometry obtained at TDA-PBE0/def2-TZVPD level of theory.Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S1(ππ*)	H-1	\rightarrow	L	0.31;	Н	\rightarrow	L	0.31;	Н	\rightarrow	L+1	0.25;	4.74	0.0378
S2(ππ*)	н	\rightarrow	L	0.45;	н	\rightarrow	L+1	0.36;					4.98	0.0637
S ₃ (πσ*)	Н	\rightarrow	L+2	0.88;									5.15	0.0004
S4(πσ*)	H-1	\rightarrow	L+2	0.76;									5.60	0.0332
Τ1(ππ*)	Н	\rightarrow	L	0.82;									3.41	
Τ2(ππ*)	Н	\rightarrow	L+1	0.58;	H-1	\rightarrow	L	0.19;					4.10	
Τ ₃ (ππ*)	H-1	\rightarrow	L	0.63;	H-1	\rightarrow	L+1	0.16;	Н	\rightarrow	L	0.12;	4.16	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.63;	Н	\rightarrow	L+1	0.24;					4.44	
Τ₅(πσ*)	Н	\rightarrow	L+2	0.75;									4.89	
Τ ₆ (ππ*)	H-1	\rightarrow	L+5	0.49;	H-2	\rightarrow	L	0.26;					4.93	

Table S4. Vertical excitation energies, electronic structure, and oscillator strengths of 2MBT in acetonitrile at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S1(ππ*)	H-1	\rightarrow	L	0.30;	Н	\rightarrow	L	0.30;	Н	\rightarrow	L+1	0.30;	4.73	0.0662
S2(ππ*)	н	\rightarrow	L	0.49;	Н	\rightarrow	L+1	0.34;					4.95	0.1079
S ₃ (πσ*)	Н	\rightarrow	L+2	0.90;									5.26	0.0003
S4(ππ*)	H-1	\rightarrow	L	0.52;	н	\rightarrow	L+1	0.28;					5.53	0.4220
Τ1(ππ*)	Н	\rightarrow	L	0.83;									3.42	
Τ2(ππ*)	Н	\rightarrow	L+1	0.63;	H-1	\rightarrow	L+1	0.12;	H-1	\rightarrow	L	0.11	4.11	
Τ ₃ (ππ*)	H-1	\rightarrow	L	0.69;	H-1	\rightarrow	L+1	0.16;					4.20	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.60;	Н	\rightarrow	L+1	0.25;	H-1	\rightarrow	L	0.12	4.44	
Τ₅(ππ*)	Н	\rightarrow	L+4	0.47;	H-2	\rightarrow	L	0.26;					4.95	
Τ ₆ (πσ*)	H-1	\rightarrow	L+2	0.77;									5.00	

Table S5. Vertical excitation energies, electronic structure, and oscillator strengths of 2MBT in cyclohexane at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S1(ππ*)	Н	\rightarrow	L	0.35;	H-1	\rightarrow	L	0.29;	Н	\rightarrow	L+1	0.26;	4.72	0.0763
S₂(ππ*)	н	\rightarrow	L	0.46;	н	\rightarrow	L+1	0.36;					4.95	0.1086
S₃(πσ*)	н	\rightarrow	L+2	0.89;									5.20	0.0004
S4(ππ*)	H-1	\rightarrow	L	0.51;	н	\rightarrow	L+1	0.30;					5.52	0.4700
T ₁ (ππ*)	Н	\rightarrow	L	0.83;									3.42	
Τ2(ππ*)	Н	\rightarrow	L+1	0.60;	H-1	\rightarrow	L	0.15;	H-1	\rightarrow	L+1	0.11;	4.10	
T₃(ππ*)	H-1	\rightarrow	L	0.67;	H-1	\rightarrow	L+1	0.16;	Н	\rightarrow	L	0.11;	4.18	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.62;	Н	\rightarrow	L+1	0.25;	H-1	\rightarrow	L	0.10	4.44	
T₅(ππ*)	Н	\rightarrow	L+5	0.48;	H-2	\rightarrow	L	0.25;					4.94	
Τ ₆ (πσ*)	Н	\rightarrow	L+2	0.76;									4.95	

Table S6. Vertical excitation energies, electronic structure, and oscillator strengths of 3MBT in the vacuum at ground state minimum geometry obtained at TDA-PBE0/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S ₁ (ππ*)	Н	\rightarrow	L	0.64;	H-1	\rightarrow	L	0.15;	H-1	\rightarrow	L+1	0.10;	4.71	0.0634
S2(ππ*)	Н	\rightarrow	L+1	0.60;	H-1	\rightarrow	L	0.19;	Н	\rightarrow	L	0.16;	4.85	0.0058
S₃(πσ*)	Н	\rightarrow	L+2	0.89;									5.16	0.0004
S₄(πσ*)	н	\rightarrow	L+3	0.94:									5.59	0.0028
- (·		,										
Τ1(ππ*)	н	\rightarrow	L	0.84;									3.36	
Τ2(ππ*)	н	\rightarrow	L+1	0.69;									4.07	
- (
T₃(ππ*)	H-1	\rightarrow	L	0.80;									4.17	
Τ₄(ππ*)	H-1	\rightarrow	L+1	0.73;	Н	\rightarrow	L+1	0.15;					4.52	
Τ₅(πσ*)	н	\rightarrow	L+5	0.41;	H-2	\rightarrow	L	0.37	н	\rightarrow	L+1	0.10	4.86	
T ₆ (ππ*)	Н	\rightarrow	L+2	0.80;									4.88	

Table S7. Vertical excitation energies, electronic structure, and oscillator strengths of 3MBT in acetonitrile at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S1(ππ*)	Н	\rightarrow	L	0.66;	H-1	\rightarrow	L	0.14;					4.70	0.1099
S2(ππ*)	Н	\rightarrow	L+1	0.62;	Н	\rightarrow	L	0.18;	H-1	\rightarrow	L	0.16;	4.83	0.0095
S ₃ (πσ*)	Н	\rightarrow	L+2	0.91;									5.24	0.0000
S4(πσ*)	Н	\rightarrow	L+3	0.96;									5.62	0.0041
Τ1(ππ*)	Н	\rightarrow	L	0.85;									3.38	
Τ2(ππ*)	Н	\rightarrow	L+1	0.71;	H-1	\rightarrow	L+1	0.10					4.08	
Τ₃(ππ*)	H-1	\rightarrow	L	0.80;									4.22	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.71;	н	\rightarrow	L+1	0.15;	H-1	\rightarrow	L	0.11	4.53	
Τ₅(ππ*)	н	\rightarrow	L+5	0.39;	H-2	\rightarrow	L	0.38					4.88	
T ₆ (πσ*)	Н	\rightarrow	L+2	0.83;									4.96	

Table S8. Vertical excitation energies, electronic structure, and oscillator strengths of 3MBT in cyclohexane at ground state minimum geometry obtained at TDA-PBE0/CPCM/def2-TZVPD level of theory. Components of electronic structure with a contribution less than 0.10 are omitted.

State	Elect	roni	c Stru	cture									VEE/eV	f(r)
S ₁ (ππ*)	Н	\rightarrow	L	0.70;	H-1	\rightarrow	L	0.12;					4.68	0.1171
S2(ππ*)	Н	\rightarrow	L+1	0.63;	H-1	\rightarrow	L	0.19;	н	\rightarrow	L	0.14;	4.83	0.0076
S₃(πσ*)	н	\rightarrow	L+2	0.91;									5.20	0.0000
S4(ππ*)	H-1	\rightarrow	L	0.55;	Н	\rightarrow	L+1	0.25					5.61	0.6461
T ₁ (ππ*)	н	\rightarrow	L	0.84;									3.37	
Τ2(ππ*)	н	\rightarrow	L+1	0.70;									4.08	
T ₃ (ππ*)	H-1	\rightarrow	L	0.80;									4.19	
Τ4(ππ*)	H-1	\rightarrow	L+1	0.72;	Н	\rightarrow	L+1	0.15;					4.53	
T₅(ππ*)	Н	\rightarrow	L+5	0.40;	H-2	\rightarrow	L	0.38	Н	\rightarrow	L+1	0.10	4.87	
Τ ₆ (πσ*)	Н	\rightarrow	L+2	0.82;									4.93	

L + 2

L

L+1

Figure S14. Electron density of 2MBT frontier Kohn-Sham orbitals at the S_0 minimum in vacuum, contour value of the isosurfaces was set to 0.02. Visualized by Multiwfn² and VMD³.

L + 6

L + 1

Figure S15. Electron density of 3MBT frontier Kohn-Sham orbitals at the S₀ minimum in vacuum, contour value of the isosurfaces was set to 0.02. Visualized by Multiwfn² and VMD³.

	S₁(ππ*) minimum	S-C2 s	tretched	d S ₁ (πσ*) minimum	S-C7a s	stretche	d S ₁ ($\pi\sigma^*$) minimum
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.66	-	S₁(πσ*)	4.54	-	S1(πσ*)	4.16	-
T₁(ππ*)	3.14	0.0	Τ1(πσ*)	4.14	0.7	T₁(πσ*)	3.82	0.2
Τ2(ππ*)	4.12	0.0	Τ₂(σσ*)	5.00	91.4	Τ₂(σσ*)	4.92	73.0
Τ₃(ππ*)	4.34	0.0	Τ₃(πσ*)	5.14	0.4	Τ₃(ππ*)	5.46	50.0
Τ₄(ππ*)	4.88	0.0	Τ4(ππ*)	5.92	42.1	Τ₄(πσ*)	5.58	0.6
Τ₅(ππ*)	4.95	0.0						
Τ ₆ (πσ*)	5.32	30.0						

Table S9. Vertical energies in acetonitrile at TN $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

Table S10. Vertical energies in cyclohexane at TN $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

	S₁(ππ*) minimum	S-C2 s	tretched	d S ₁ (πσ*) minimum	S-C7a	stretche	d S ₁ (πσ*) minimum
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.64	-	S1(πσ*)	4.51	-	S1(πσ*)	4.16	-
Τ₁(ππ*)	3.13	0.0	Τ1(πσ*)	4.10	0.7	T1(πσ*)	3.81	0.3
Τ2(ππ*)	4.12	0.0	Τ₂(σσ*)	5.00	92.4	Τ₂(σσ*)	4.92	74.3
Τ₃(ππ*)	4.32	0.0	Τ₃(πσ*)	5.18	0.3	T₃(ππ*)	5.46	51.4
Τ ₄ (ππ*)	4.88	0.0	Τ₄(ππ*)	5.93	43.5	Τ₄(πσ*)	5.62	0.6
T₅(ππ*)	4.94	0.0						
Τ ₆ (πσ*)	5.27	22.6						

	S₁(ππ*) minimum	S-C2 s	tretched	d S ₁ (πσ*) minimum	S-C7a	stretche	d S ₁ ($\pi\sigma^*$) minimum
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.65	-	S₁(πσ*)	4.28	-	S1(πσ*)	4.14	-
T₁(ππ*)	3.27	0.0	Τ ₁ (πσ*)	3.88	0.6	Τ1(πσ*)	3.80	0.3
Τ2(ππ*)	4.00	0.0	Τ₂(σσ*)	4.69	93.2	Τ₂(σσ*)	5.01	68.1
Τ₃(ππ*)	4.10	0.0	Τ₃(πσ*)	5.00	1.5	Τ₃(ππ*)	5.41	49.0
Τ₄(ππ*)	4.93	0.0	Τ₄(ππ*)	5.74	39.5	Τ₄(πσ*)	5.54	0.6
Τ₅(ππ*)	5.05	0.1						
Τ ₆ (πσ*)	5.49	25.8						

Table S11. Vertical energies in vacuum at 2MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

Table S12. Vertical energies in acetonitrile at 2MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

	S₁(ππ*) minimum	S-C2 s	tretched	d S ₁ (πσ*) minimum	S-C7a	stretche	d S ₁ (πσ*) minimum
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.63	-	S1(πσ*)	4.34	-	S1(πσ*)	4.13	-
T ₁ (ππ*)	3.28	0.0	Τ₁(πσ*)	3.96	0.6	Τ₁(πσ*)	3.81	0.3
Τ2(ππ*)	4.03	0.0	Τ₂(σσ*)	4.71	90.7	Τ₂(σσ*)	5.01	65.3
Τ₃(ππ*)	4.12	0.0	Τ₃(πσ*)	4.93	1.8	T₃(ππ*)	5.41	46.8
Τ ₄ (ππ*)	4.94	0.0	Τ₄(ππ*)	5.69	36.5	Τ₄(πσ*)	5.51	0.6
T ₅ (ππ*)	5.16	0.1						
Τ ₆ (πσ*)	5.59	26.0						

$S_1(\pi\pi^*)$ minimum			S-C2 stretched $S_1(\pi\sigma^*)$ minimum		S-C7a stretched S ₁ ($\pi\sigma^*$) minimum			
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.62	-	S₁(πσ*)	4.31	-	S1(πσ*)	4.14	-
T₁(ππ*)	3.28	0.0	Τ1(πσ*)	3.92	0.7	Τ1(πσ*)	3.81	0.3
Τ2(ππ*)	4.02	0.0	Τ₂(σσ*)	4.70	92.5	Τ₂(σσ*)	5.01	67.1
Τ₃(ππ*)	4.11	0.0	Τ₃(πσ*)	4.98	1.5	Τ₃(ππ*)	5.41	48.0
Τ₄(ππ*)	4.40	0.0	Τ₄(ππ*)	5.72	38.3	Τ₄(πσ*)	5.53	0.6
Τ₅(ππ*)	4.94	0.1						
Τ ₆ (πσ*)	5.10	26.0						

Table S13. Vertical energies in cyclohexane at 2MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-

(7.2 stratched $S_1(\pi\sigma^*)$	minimo	rocportivaly	relative to the	ground state	minimum energy
C/a succence $S_1(nO)$	mmma,	respectively,		ground state	minimum energy.

Table S14. Vertical energies in vacuum at 3MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

$S_1(\pi\pi^*)$ minimum			S-C2 stretched $S_1(\pi\sigma^*)$ minimum		S-C7a stretched $S_1(\pi\sigma^*)$ minimum			
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.52	-	S1(πσ*)	4.55	-	S1(πσ*)	4.11	-
Τ1(ππ*)	3.17	0.0	T ₁ (πσ*)	4.13	0.8	Τ₁(πσ*)	3.75	0.3
Τ2(ππ*)	4.07	0.0	Τ₂(σσ*)	5.14	91.5	Τ₂(σσ*)	5.05	67.8
Τ₃(ππ*)	4.46	0.0	Τ₃(πσ*)	5.16	5.9	T₃(ππ*)	5.28	61.8
Τ ₄ (ππ*)	4.84	0.0	Τ₄(ππ*)	5.88	46.4	Τ₄(πσ*)	5.65	0.5
Τ₅(ππ*)	4.92	0.0						
Τ ₆ (πσ*)	5.17	9.7						

$S_1(\pi\pi^*)$ minimum			S-C2 stretched $S_1(\pi\sigma^*)$ minimum		S-C7a stretched $S_1(\pi\sigma^*)$ minimum			
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S₁(ππ*)	4.50	-	S1(πσ*)	4.62	-	S1(πσ*)	4.09	-
Τ₁(ππ*)	3.19	0.0	Τ1(πσ*)	4.21	0.8	Τ₁(πσ*)	3.76	0.3
Τ2(ππ*)	4.07	0.0	Τ₂(πσ*)	5.08	1.6	Τ₂(σσ*)	5.05	66.4
Τ₃(ππ*)	4.50	0.0	Τ₃(σσ*)	5.15	90.2	Τ₃(ππ*)	5.28	58.6
Τ₄(ππ*)	4.84	0.0	Τ₄(ππ*)	5.87	43.9	Τ₄(πσ*)	5.60	0.5
Τ₅(ππ*)	4.93	0.0						
Τ ₆ (πσ*)	5.24	9.8						

Table S15. Vertical energies in acetonitrile at 3MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

Table S16. Vertical energies in cyclohexane at 3MBT $S_1(\pi\pi^*)$ minimum, S-C2 stretched and S-C7a stretched $S_1(\pi\sigma^*)$ minima, respectively, relative to the ground state minimum energy.

	S1(ππ*) minimum	S-C2 s	tretchec	$I S_1(πσ^*)$ minimum	S-C7a	stretche	ed S ₁ ($\pi\sigma^*$) minimum
State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$	State	E/eV	$/cm^{-1}$	State	E/eV	$< T_n \hat{H}_{SO} S_1 > / cm^{-1}$
S1(ππ*)	4.48	-	S₁(πσ*)	4.58	-	S1(πσ*)	4.09	-
Τ₁(ππ*)	3.18	0.0	T ₁ (πσ*)	4.17	0.8	T₁(πσ*)	3.76	0.3
Τ2(ππ*)	4.07	0.0	Τ₂(πσ*)	5.13	9.5	Τ₂(σσ*)	5.05	67.4
Τ₃(ππ*)	4.48	0.0	Τ₃(σσ*)	5.14	90.8	T₃(ππ*)	5.28	60.4
Τ ₄ (ππ*)	4.84	0.0	Τ₄(ππ*)	5.87	45.4	Τ₄(πσ*)	5.60	0.5
T ₅ (ππ*)	4.92	0.0						
Τ ₆ (πσ*)	5.20	10.4						

Figure S16. Single point energy of linear interpolated geometries between TN ground state minimum and S-C2 stretched $S_1(\pi\sigma^*)$ minimum in the vacuum. Points of each step are connected with straight lines. Singlet states are black lines and triplet states are red lines. The horizontal break is introduced to better highlight the excited state topography.

Figure S17. Single point energy of linear interpolated geometries between 2MBT ground state minimum and S-C2 stretched $S_1(\pi\sigma^*)$ minimum in the vacuum. Points of each step are connected with straight lines. Singlet states are black lines and triplet states are red lines. The horizontal break is introduced to better highlight the excited state topography.

Figure S18. Single point energy of linear interpolated geometries between 2MBT ground state minimum and S-C7a stretched $S_1(\pi\sigma^*)$ minimum in the vacuum. Points of each step are connected with straight lines. Singlet states are black lines and triplet states are red lines. The horizontal break is introduced to better highlight the excited state topography.

Figure S19. Single point energy of linear interpolated geometries between 3MBT ground state minimum and S-C2 stretched $S_1(\pi\sigma^*)$ minimum in the vacuum. Points of each step are connected with straight lines. Singlet states are black lines and triplet states are red lines. The horizontal break is introduced to better highlight the excited state topography.

Figure S20. Single point energy of linear interpolated geometries between 3MBT ground state minimum and S-C7a stretched $S_1(\pi\sigma^*)$ minimum in the vacuum. Points of each step are connected with straight lines. Singlet states are black lines and triplet states are red lines. The horizontal break is introduced to better highlight the excited state topography.

Figure S21. Spectral evolution of the transient absorption spectra of thianaphthene in cyclohexane after excitation of (a) 266 nm and (b) 290 nm. Breaks on the horizontal axis were used to exclude the overtone signal produced from the excitation source. The arrows displayed in these figures are not used to highlight specific wavelengths but to draw attention to trends. The spectra at a time delay of 0 ps is due to the coherent signal of the solvent.

Figure S22. Spectral evolution of the transient absorption spectra of 2-methylbenzothiophene in cyclohexane after excitation of (a) 266 nm and (b) 290 nm. Breaks on the horizontal axis were used to exclude the overtone signal produced from the excitation source. The arrows displayed in these figures are not used to highlight specific wavelengths but to draw attention to trends. The spectra at a time delay of 0 ps is due to the coherent signal of the solvent.

Figure S23. Spectral evolution of the transient absorption spectra of 3-methylbenzothiophene in cyclohexane after excitation of (a) 266 nm and (b) 290 nm. Breaks on the horizontal axis were used to exclude the overtone signal produced from the excitation source. The arrows displayed in these figures are not used to highlight specific wavelengths but to draw attention to trends. The spectra at a time delay of 0 ps is due to the coherent signal of the solvent.

Table S17. Band peaks of EADS of TN, 2MBT, and 3MBT obtained from femtosecond broadband transient absorption measurements in cyclohexane and acetonitrile. Values in parentheses indicate shoulders.

Compound	Solvent	Ex. λ	EADS1 (λ _{abs} /nm)	EADS2 (λ_{abs}/nm)	EADS3
		(nm)			(λ _{abs} /nm)
TN	Acetonitrile	266	370, (445), 558	353, 548	421
		290	376, (485), 548	382, 541	422
	Cyclohexane	266	378, 557	483, 549	425
		290	373, 485, 550	377, 485, 550	425
2MBT	Acetonitrile	266	372, 523	375, 509	418
		290	-	377, 540	417
	Cyclohexane	266	382, (423), 546	377, (419), 498, 545	423
		290	-	377, (419), 498, 545	423
ЗМВТ	Acetonitrile	266	373, (500)	372, 497	417
		290	-	380, 493	416
	Cyclohexane	266	388, (494)	384, 502	420
		290	-	384, 502	420

Cartesian Coordinates of Optimized Geometries of Thianapthene Derivatives in Angstrom

Thianapthene Ground State Geometry

С	-3.97754971	2.46994205	0.00019918
С	-5.06171040	1.61637047	0.00029748
С	-4.88253403	0.22775757	0.00005642
С	-3.61857468	-0.32120128	-0.00025123
С	-2.50007267	0.51989259	-0.00033923
С	-2.70030388	1.91579645	-0.00013636
Η	-4.11696423	3.54448214	0.00020935
Η	-6.06436208	2.02732998	0.00047037
Η	-5.75050491	-0.42094360	0.00013304
Η	-3.48438124	-1.39716359	-0.00033656
С	-1.10934038	0.18524798	-0.00027826
С	-0.31267777	1.27873796	0.00028604
S	-1.19290710	2.75914022	-0.00097548
Η	-0.73316622	-0.82936933	-0.00011985
Η	0.76689929	1.30647040	0.00078510
Thi	anapthene S ₁ (π7	τ*) Geometry	
С	-3.96453617	2.48325450	0.00008081
С	-5.10315880	1.60046845	0.00005285
С	-4.91117550	0.24083573	0.00002333
С	-3.62126987	-0.33757683	-0.00001043
С	-2.48801045	0.51115688	-0.00006013
С	-2.71137025	1.90843120	0.00004898
Η	-4.09629718	3.55737460	0.00012421
Η	-6.10142726	2.01773140	0.00005437
Η	-5.77272064	-0.41755751	0.00003076
Η	-3.50095088	-1.41381772	0.00001104

С	-1.11128482	0.19042645	-0.00013361
С	-0.25584387	1.30079273	0.00002647
S	-1.18268078	2.73325416	0.00020045
Η	-0.73773459	-0.82631946	-0.00030062
Η	0.82031101	1.33403542	-0.00014848
Thi	ianapthene S ₁ (π	σ*), S-C2 Elon	gation Geometry
С	-4.90097597	2.84020443	0.55036819
С	-5.92662876	1.93516378	0.55417782
С	-5.64011925	0.56254437	0.56408362
С	-4.32918441	0.11338689	0.57006210
С	-3.26550367	1.00242644	0.56643130
С	-3.54349536	2.41291873	0.55625972
Η	-5.09394560	3.90564138	0.54275237
Η	-6.95520670	2.27432636	0.54959007
Η	-6.45251274	-0.15499758	0.56710936
Η	-4.12263861	-0.95125098	0.57773138
С	-1.88617999	0.54796826	0.57260232
С	-0.89806059	1.41793286	0.56875952
S	-2.30911306	3.54711382	0.55124877
Η	-1.73368405	-0.53702585	0.58042798
Η	0.17378871	1.24780707	0.57229547
Thi	ianapthene S ₁ (π	σ*), S-C7a Elo	ngation Geometry
С	-4.83536407	2.88059131	0.56958621
С	-5.89759307	1.96573496	0.56336381
С	-5.65749690	0.59368691	0.56242872
С	-4.36167978	0.12084184	0.56765916
С	-3.28630025	1.03453076	0.57393831
С	-3.55464164	2.40486052	0.57474749

Η	-5.04661757	3.94618215	0.57019998		
Н	-6.92089421	2.32864600	0.55921682		
Н	-6.48990975	-0.09949624	0.55758885		
Η	-4.16334849	-0.94687693	0.56697958		
С	-1.93355239	0.62144603	0.57951068		
С	-0.89104838	1.55043496	0.58565522		
S	-1.10374307	3.19139892	0.58712907		
Η	-1.69125723	-0.43696911	0.57904949		
Η	0.12696681	1.16845792	0.58973661		
Thi	anapthene T ₁ (π	π*) Geometry			
С	-3.94346015	2.46599006	-0.00061622		
С	-5.07526032	1.59413529	0.01395165		
С	-4.90114668	0.22021121	0.01738773		
С	-3.63310644	-0.34057263	0.00875615		
С	-2.48456265	0.50357987	-0.01127747		
С	-2.70194970	1.92364196	-0.01846161		
Η	-4.08883357	3.53967181	-0.00696608		
Η	-6.07108890	2.01907393	0.01315253		
Η	-5.76992478	-0.42775077	0.02782033		
Η	-3.50321513	-1.41631478	0.01602673		
С	-1.15592674	0.16648986	-0.05187162		
С	-0.25073470	1.34159338	-0.09491800		
S	-1.15829058	2.79657891	-0.05822011		
Η	-0.78094087	-0.84803076	-0.08128899		
Η	0.78029121	1.34419267	0.22652498		
Thianapthene $T_1(\pi\sigma^*)$, S-C2 Elongation Geometry					

С	-4.92079997	2.84549503	0.55025764
С	-5.93795649	1.92363442	0.55423981

С	-5.63240364	0.55919462	0.56415339	
С	-4.31637413	0.13536770	0.56994941	
С	-3.25910594	1.04381353	0.56614766	
С	-3.56359028	2.44250406	0.55599623	
Н	-5.13104076	3.90793115	0.54259400	
Н	-6.97052050	2.25100844	0.54973067	
Н	-6.43206772	-0.17254665	0.56732964	
Н	-4.09095736	-0.92546102	0.57763686	
С	-1.89242893	0.56472135	0.57243736	
С	-0.83468517	1.35674220	0.56938289	
S	-2.35011398	3.61737878	0.55071213	
Н	-1.77642221	-0.52293596	0.58010505	
Н	0.22500706	1.13731233	0.57322727	
Thi	anapthene T ₁ (π	σ*), S-C7a Elo	ngation Geometry	,
С	-4.89373731	2.89388713	0.56933645	
C C	-4.89373731 -5.93117863	2.89388713 1.95911339	0.56933645 0.56320505	
C C C	-4.89373731 -5.93117863 -5.65282083	2.89388713 1.95911339 0.59235700	0.56933645 0.56320505 0.56244987	
C C C C	-4.89373731 -5.93117863 -5.65282083 -4.34725627	2.89388713 1.95911339 0.59235700 0.14733465	0.56933645 0.56320505 0.56244987 0.56775971	
C C C C C	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373	
C C C C C C	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732	
C C C C C H	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164	
C C C C C H H	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147	
C C C C C H H H	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721 -6.46742871	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167 -0.12205215	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147 0.55766486	
C C C C C H H H H	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721 -6.46742871 -4.12890015	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167 -0.12205215 -0.91630475	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147 0.55766486 0.56717841	
C C C C C H H H H C	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721 -6.46742871 -4.12890015 -1.92589058	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167 -0.12205215 -0.91630475 0.64954511	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147 0.55766486 0.56717841 0.57958275	
C C C C C H H H C C	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721 -6.46742871 -4.12890015 -1.92589058 -0.84554539	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167 -0.12205215 -0.91630475 0.64954511 1.52162718	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147 0.55766486 0.56717841 0.57958275 0.58582560	
C C C C C H H H C C S	-4.89373731 -5.93117863 -5.65282083 -4.34725627 -3.28304804 -3.60615044 -5.11460836 -6.96235721 -6.46742871 -4.12890015 -1.92589058 -0.84554539 -0.97399922	2.89388713 1.95911339 0.59235700 0.14733465 1.07433610 2.42890505 3.95623027 2.29726167 -0.12205215 -0.91630475 0.64954511 1.52162718 3.17729928	0.56933645 0.56320505 0.56244987 0.56775971 0.57400373 0.57453732 0.56990164 0.55899147 0.55766486 0.56717841 0.57958275 0.58582560 0.58769787	

Н 0.14970733 1.08208248 0.58973096

2-Methylbenzothiophene Ground State Geometry

С	-1.58002849	-1.32734454	-0.00002287
С	-2.77969753	-0.64214816	0.00000589
С	-2.80522813	0.75607727	0.00003984
С	-1.63352029	1.48429184	0.00004713
С	-0.40486381	0.81680174	0.00001587
С	-0.39974135	-0.59243819	-0.00002074
Η	-1.56032554	-2.41081195	-0.00006222
Η	-3.71113830	-1.19604209	-0.00000585
Η	-3.75852427	1.27164375	0.00005995
Η	-1.65876165	2.56845381	0.00007806
С	0.92267038	1.34979113	0.00003539
С	1.88835531	0.39994954	0.00004674
S	1.21856182	-1.20231578	-0.00009144
Η	1.14409171	2.41014262	0.00009030
С	3.36303148	0.59049369	0.00005031
Η	3.82589644	0.13760250	0.88093845
Η	3.60044896	1.65502912	0.00064727
Η	3.82574193	0.13863190	-0.88145154
2-N	lethylbenzothio	ophene S ₁ (ππ*)	Geometry
С	-1.56944938	-1.33527865	-0.08400725
С	-2.82448428	-0.63251945	-0.01715193
С	-2.83729353	0.74131758	0.04872450
С	-1.65115929	1.49818576	0.06771638
С	-0.40205188	0.82529809	0.03989165
С	-0.41742757	-0.58859633	-0.04455636
Н	-1.54509938	-2.41508067	-0.15434456

- Н -3.74965766 -1.19390395 -0.02325600
- Н -3.78721001 1.26255756 0.08885463
- Н -1.68794203 2.57998536 0.10857140
- C 0.90703468 1.34308617 0.02656449
- C 1.93425118 0.37757244 -0.09890792
- S 1.22625445 -1.17853958 -0.10189126
- _____
- H 1.13211584 2.40151006 0.09229229
- C 3.39414336 0.58282628 -0.00598229
- Н 3.75424753 0.60126329 1.03631057
- Н 3.66960239 1.54062854 -0.45561008
- Н 3.95109425 -0.20250430 -0.52281771

2-Methylbenzothiophene S₁($\pi\sigma^*$), S-C2 Elongation Geometry

С	-4.88241867	2.83079664	0.69157747
С	-5.91378267	1.93955710	0.59735955
С	-5.63892940	0.56775456	0.46990479
С	-4.33577673	0.11111920	0.43894410
С	-3.25967678	0.98816662	0.53231606
С	-3.52667684	2.39798991	0.66338619
Η	-5.06774079	3.89301370	0.79050031
Η	-6.93972985	2.28629237	0.62052350
Η	-6.45767323	-0.13863398	0.39519477
Η	-4.13600336	-0.95027145	0.34023021
С	-1.89682825	0.51223974	0.50029929
С	-0.87854676	1.34584354	0.58903948
S	-2.28945401	3.52449679	0.78197958
Н	-1.75546490	-0.57257764	0.39896486
С	0.56882896	1.19840108	0.58893531
Η	0.99751347	1.60448761	1.51101141

- $H \qquad 0.88948766 \qquad 0.14790226 \qquad 0.49339402$
- Н 1.01395250 1.76814343 -0.23336134

2-Methylbenzothiophene S₁($\pi\sigma^*$), S-C7a Elongation Geometry

С	-4.83948504	2.86723614	0.76702899	
С	-5.89821147	1.96188847	0.60613406	
С	-5.65162124	0.60570890	0.40527676	
С	-4.35352542	0.14061314	0.36288275	
С	-3.28229810	1.04557372	0.52558931	
С	-3.55566822	2.40127913	0.72650664	
Η	-5.05637864	3.92073437	0.92206860	
Η	-6.92317592	2.31913966	0.63830659	
Η	-6.48048505	-0.08109431	0.28226952	
Η	-4.15039658	-0.91470839	0.20534204	
С	-1.93132624	0.63697000	0.49042611	
С	-0.86865935	1.54388878	0.64750822	
S	-1.13572640	3.17014233	0.87754728	
Η	-1.69435227	-0.41223067	0.33507132	
С	0.53023823	1.00958940	0.63304410	
Η	0.62069575	0.15410701	-0.04064955	
Η	1.24259994	1.78033504	0.34437848	
Η	0.79925926	0.66768627	1.63808235	
2-Methylbenzothiophene T ₁ ($\pi\pi^*$) Geometry				
С	-1.52848555	-1.31617894	-0.10178483	
С	-2.75535059	-0.63505162	0.09509015	
С	-2.78676019	0.75072619	0.19028674	
С	-1.62455732	1.49520553	0.10085567	
С	-0.37931169	0.84137965	-0.10043582	
С	-0.38321705	-0.58942342	-0.20881734	

Η	-1.51552168	-2.39666645	-0.18246805
Η	-3.67429162	-1.20479500	0.15759079
Η	-3.73489945	1.25435851	0.33851918
Η	-1.65097033	2.57553815	0.18340075
С	0.87549506	1.38535285	-0.24638789
С	1.95978830	0.37389882	-0.43059036
S	1.24767748	-1.21070248	-0.50270135
Η	1.08677991	2.44743354	-0.25401824
С	3.31786803	0.56554753	0.12399704
Η	3.30052300	0.62033420	1.22614122
Η	3.75399265	1.50148504	-0.23675408

Н 3.98820973 -0.25063387 -0.15152304

2-Methylbenzothiophene T₁($\pi\sigma^*$), S-C2 Elongation Geometry

С	-4.93723925	2.83786083	0.69159947
С	-5.94634231	1.91409828	0.59446602
С	-5.62832998	0.55705483	0.46904072
С	-4.31046587	0.14711053	0.44283983
С	-3.25649276	1.05891038	0.53925795
С	-3.57439776	2.45084072	0.66803222
Η	-5.15606242	3.89408341	0.78953722
Η	-6.98163333	2.23230661	0.61467323
Η	-6.42114656	-0.17817118	0.39183999
Η	-4.07563216	-0.90727121	0.34522242
С	-1.89582402	0.57734925	0.50662127
С	-0.82205221	1.34565194	0.58962942
S	-2.38177802	3.64130249	0.79230105
Η	-1.78109648	-0.50794319	0.40489770
С	0.61964947	1.13302113	0.58311017

- Н 1.07182069 1.51215902 1.50486975
- Н 0.87987685 0.06909742 0.48503949
- Н 1.08822649 1.67726021 -0.24277838

2-Methylbenzothiophene T₁($\pi\sigma^*$), S-C7a Elongation Geometry

С	-4.91421346	2.86920250	0.83649777	
С	-5.93990015	1.95011240	0.60437938	
С	-5.64433891	0.61376254	0.33503987	
С	-4.33402796	0.18489718	0.29498889	
С	-3.28192816	1.09758860	0.52674227	
С	-3.62041168	2.42293727	0.79211956	
Η	-5.14935230	3.90786622	1.04562536	
Η	-6.97462343	2.27620283	0.63336997	
Η	-6.44910278	-0.08955147	0.15665057	
Η	-4.10276407	-0.85519787	0.08544208	
С	-1.92365825	0.68440393	0.49177829	
С	-0.83335407	1.52945591	0.71061311	
S	-1.04442290	3.15138593	1.04301728	
Η	-1.71966840	-0.36237162	0.27989209	
С	0.55356061	0.95971364	0.64357089	
Η	0.54022788	-0.10915046	0.42119650	
Η	1.13633311	1.47092327	-0.12555215	
Η	1.07312816	1.11467820	1.59144183	
3-Methylbenzothiophene Ground State Geometry				
С	-1.64232686	1.25047777	0.00002671	
С	-2.68186356	0.34157717	0.00002770	
С	-2.43073642	-1.03454103	0.00002543	
С	-1.13807671	-1.51557141	0.00002178	
С	-0.06584261	-0.61738351	0.00001996	

С	-0.33903611	0.76397994	0.00002319
Н	-1.83752577	2.31625112	0.00003081
Н	-3.70452394	0.69999913	0.00003165
Н	-3.26315529	-1.72836531	0.00002693
Н	-0.95004273	-2.58345044	0.00002023
С	1.34466219	-0.89636720	0.00001351
С	2.07302601	0.24597142	0.00000791
S	1.12325032	1.68570909	0.00002922
С	1.90994150	-2.27479449	0.00001382
Н	3.15068864	0.32643750	-0.00000178
Н	2.99997349	-2.25488686	-0.00005456
Н	1.58122580	-2.83521041	-0.88025825
Н	1.58133542	-2.83516572	0.88035588
3-N	lethylbenzothic	ophene S ₁ (ππ*)	Geometry
С	-1.63062577	1.27239399	0.00003075
С	-2.70677778	0.31837242	0.00003372
С	-2.45817169	-1.02745174	0.00004221
С	-1.13617094	-1.55028237	0.00005087
С	-0.06495095	-0.62835316	0.00003472
С	-0.34660716	0.74202040	0.00002548
Н	-1.81693524	2.33689281	0.00002241
Н	-3.72805564	0.67943404	0.00002678
Н	-3.29283321	-1.71944399	0.00004455
Н	-0.95816470	-2.61737053	0.00007998
С	1.34324403	-0.89335181	0.00001156
С	2.12899037	0.27425879	-0.00000654
S	1.14596447	1.64070278	-0.00000672
С	1.91153256	-2.25394466	-0.00000024

Н	3.20419002	0.35079004	-0.00000824	
Η	3.00077600	-2.24775944	0.00004631	
Н	1.55782451	-2.81109391	-0.87522584	
Н	1.55774448	-2.81114689	0.87515838	
3-N	Iethylbenzothio	phene S ₁ (πσ*),	, S-C2 Elongation Geometry	
С	-4.89522280	2.84355860	0.55028525	
С	-5.93523757	1.95450397	0.55400161	
С	-5.66391540	0.58130298	0.56395918	
С	-4.35734978	0.11444748	0.57006928	
С	-3.27638043	0.98415053	0.56656534	
С	-3.54393730	2.39877128	0.55633836	
Η	-5.07114902	3.91191194	0.54262175	
Η	-6.95898624	2.30785294	0.54930171	
Η	-6.48334107	-0.12831265	0.56695292	
Η	-4.18011784	-0.95340749	0.57773424	
С	-1.89095718	0.51385653	0.57285432	
С	-0.93898044	1.43078466	0.56870815	
S	-2.31054625	3.53505828	0.55134588	
Η	0.13776256	1.28194108	0.57211329	
С	-1.63180196	-0.97210997	0.58357936	
Η	-2.06597179	-1.44669353	1.46921664	
Η	-2.06203930	-1.45876435	-0.29741428	
Η	-0.56006833	-1.16523776	0.58728746	
3-Methylbenzothiophene S ₁ ($\pi\sigma^*$), S-C7a Elongation Geometry				
С	-4.82064580	2.87614931	0.56963292	

- C-5.896995471.982161740.56337985C-5.673853980.608396210.56238471
- C -4.38404142 0.11411005 0.56756683

С	-3.29419733	1.00664189	0.57387451
С	-3.54759785	2.37603930	0.57473780
Н	-5.01004612	3.94608848	0.57033797
Н	-6.91508120	2.35962358	0.55926464
Н	-6.51480727	-0.07466493	0.55752539
Н	-4.21873475	-0.95821712	0.56674284
С	-1.92737798	0.58374420	0.57949067
С	-0.91799556	1.55841351	0.58556246
S	-1.15570149	3.19505625	0.58692134
Η	0.10947067	1.19994480	0.58972701
С	-1.55691820	-0.85513458	0.57902702
Η	-1.97190007	-1.36634017	1.45385448
Η	-1.96393917	-1.36372062	-0.30105087
Η	-0.47569871	-0.98975489	0.58373341
	/		Coordinations
3-N	Tetnyibenzotnic	ppnene $I_1(\pi\pi^*)$	Geometry
3-№ С	-1.61409601	1.24414081	0.03385936
3-N C C	-1.61409601 -2.70302910	0.33720807	0.03385936 -0.08042330
3-N C C C	-1.61409601 -2.70302910 -2.46793421	<pre>Define 11(ππ[*]) 1.24414081 0.33720807 -1.02542611</pre>	0.03385936 -0.08042330 -0.15655572
3-N C C C C	-1.61409601 -2.70302910 -2.46793421 -1.17741602	 bphene 11(ππ^x) 1.24414081 0.33720807 -1.02542611 -1.53397598 	0.03385936 -0.08042330 -0.15655572 -0.12577560
3-N C C C C C	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876	 bphene 11(ππ^x) 1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393
3-N C C C C C C C	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177	 bphene 11(ππ^x) 1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561
3-N C C C C C C H	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284
3-N C C C C C C C H H	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196 -3.71556029	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674 0.72028259	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284 -0.09936871
3-N C C C C C C C H H H	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196 -3.71556029 -3.30556088	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674 0.72028259 -1.70795433	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284 -0.09936871 -0.24323022
3-N C C C C C C C H H H H	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196 -3.71556029 -3.30556088 -1.01221794	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674 0.72028259 -1.70795433 -2.60264413	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284 -0.09936871 -0.24323022 -0.19234686
3-N C C C C C C C C H H H H C	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196 -3.71556029 -3.30556088 -1.01221794 1.27978021	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674 0.72028259 -1.70795433 -2.60264413 -0.94620769	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284 -0.09936871 -0.24323022 -0.19234686 0.07153544
3-N C C C C C C C H H H C C	-1.61409601 -2.70302910 -2.46793421 -1.17741602 -0.06971876 -0.35059177 -1.79968196 -3.71556029 -3.30556088 -1.01221794 1.27978021 2.11702264	1.24414081 0.33720807 -1.02542611 -1.53397598 -0.65360330 0.74820278 2.30988674 0.72028259 -1.70795433 -2.60264413 -0.94620769 0.28144222	0.03385936 -0.08042330 -0.15655572 -0.12577560 -0.00785393 0.07334561 0.09710284 -0.09936871 -0.24323022 -0.19234686 0.07153544 0.22210529

- C 1.91538383 -2.27625314 0.06378058
- Н 3.15430396 0.34520328 -0.07752469
- Н 2.63347283 -2.36081721 -0.76189512
- Н 1.18926117 -3.08330567 -0.03049829
- Н 2.49194236 -2.43198934 0.98468092

3-Methylbenzothiophene T₁($\pi\sigma^*$), S-C2 Elongation Geometry

- С -4.90557694 2.84270492 0.55028342 С -5.94012775 1.94074391 0.55409894 С -5.65370016 0.57404271 0.56401971 С -4.34368299 0.12682694 0.56998586 С -3.26546281 1.01156115 0.56638040 С -3.55578686 2.41619064 0.55619081 Η -5.09492372 3.90906736 0.54262000 Η -6.96694459 2.28553308 0.54946744 Η -6.46323414 -0.14696240 0.56710789 Η -4.15410468 -0.93864119 0.57764556 С -1.88976531 0.52567934 0.57275603 С -0.88658165 1.39557333 0.56902040 S -2.33994308 3.58834781 0.55093272 Η 0.18237381 1.21447877 0.57263277 С -1.65072668 -0.96308950 0.58349836 Η -2.09111852 -1.43199769 1.46873976 Η -2.08712571 -1.44410843 -0.29721090 Η -0.58180838 -1.17233624 0.58735130 **3-Methylbenzothiophene** $T_1(\pi\sigma^*)$, S-C7a Elongation Geometry
- C -4.86026051 2.88278937 0.56945821
- C -5.91735382 1.97311101 0.56327539
- C -5.66396827 0.60265034 0.56242050

С	-4.36674706	0.13010898	0.56766409
С	-3.28407983	1.03317932	0.57395250
С	-3.58038699	2.39253241	0.57460294
Η	-5.05749229	3.95005909	0.57012436
Η	-6.94189175	2.33096715	0.55910741
Η	-6.49111760	-0.09724262	0.55760247
Η	-4.18721068	-0.93931078	0.56690889
С	-1.91319301	0.60346402	0.57958289
С	-0.88070184	1.54213674	0.58571408
S	-1.06790314	3.19008763	0.58732303
Η	0.13447384	1.14936585	0.58977471
С	-1.57476646	-0.84774109	0.57895660
Η	-1.99758051	-1.34887741	1.45497885
Η	-1.98962719	-1.34626150	-0.30234412
Η	-0.49625453	-1.00248150	0.58361023