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AUTOMATED INTENSITY AND ENERGY POSITION DETERMINATION

Band structures, (projected) density of states (PDOS), and calculated spectra are first loaded for all Uy o and
Upesr- In the first step of the automated evaluation illustrated in Figure S1, the centre energies E; and E,
between the “S 3 derived” (short “3s”), “metal d derived” (short “d”), and “S 3p derived” (short “3p”) bands,
as well as the electronic band gap energy Eq), are determined. In the second step, these energies are used to
determine the intensities

E1 EZ
135,5L = Z ISL(E)' Id,SL = Z ISL(E)
E=E1

E=Emin

lysk = Z Isx(E), and IBp,SK = Z I (E).

E=E; E=E;

Likewise, the centre of mass energies Eyp, are determined as:

E1 EZ
E3S,C0M,SL = Z ISL(E) ) E/I3S,SL , Ed,COM,SL = Z ISL(E) ’ E/Id,SL

E=Emin E=E;
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Eacomsk = Z s (E) - E/Id,SK; and Esp com,sk = 2 I (E) - E/I3p,51<-
E=E, E=E,

In the third step, the spectra are broadened with a Voigt function, using Gaussian and Lorentzian widths
adjusted to best reproduce the experimental spectra. Then, the maxima in the regions defined by E; and E,
give the respective Ej,, 4, €nergies.
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Figure S1: Illustration of steps 1 to 3 of the automated evaluation of the DFT calculation data for S L3 (left)
and S K (right) XES.

TWO STATE HYBRIDIZATION MODEL

As a simple model, we describe the hybrid bands as hybrid orbitals formed by hybridization of “atomic” S 3s,
S 3p, and metal d orbitals with wave functions @ 35, @5 3, and @4, respectively. We limit the model to hybrid
orbitals formed by two separate orbital “pairs”, i.e., S 3s with metal d and metal d with S 3p, respectively.
Analogous to the treatment of the hydrogen molecule by Heitler and London!, we then assume that the wave
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function v, of the hybrid orbital x can be described as a linear combination of the “atomic” orbitals. For
hybridization between the S 3s and metal d orbitals, this gives us Y, = ¢1@g 35 + c2¢4. With the Schrodinger
equation, the Hamiltonian H of the system, and the energy E, of the hybrid orbital x, we obtain

<l/)x|ﬁ|¢x) = <l/)x|Ex|l/)x>

(| H 1) _ (190535 + C2pa|H|c1p5 35 + C204) _ Ci€sas 20108 + cGeq

E, = = =
* (WYlihy) (C19535 + C204]C1Ps 35 + C204) (cf + 2¢16,5 + ¢5)

with the Coulomb integrals (¢@;|H|¢;) = €;, the resonance integrals (cpi |H |<p j) = pBij» and the overlap integrals
((pi |<p j) = §i; (with §;; = 1). To find values for ¢; and ¢, that minimize the energy E,, we use the variational
Ritz method? by setting the partial derivatives to 0:

0E
a_Cx:O: c1(€s3s —Ex) + c2(B3sa — ExSs3sa) =0 (1)
1
9E,
ac =0: ¢;(B3sqa — ExSs3sa) + C2(€q —Ex) =0 ()
2

This homogeneous system of linear equations only has a non-trivial solution if the determinant is zero, i.e., if

(ES 3s — Ex)(ed - Ex) - (335(1 — ExSs 3 d)z = 0.

As expected, this gives us two solutions for E,, i.e., two hybrid orbitals which we name according to Figure 6
in the main paper. Since we do not require an explicit form of the energies, they can be given in a compact
implicit form:

([))S 3sd — EdsSS 3s d)z
€4 +

Eqs =
Eds — €s3s
2
_ (/35 3sd — EsaSs3s d)
Esd = €s3s — —E
€3~ Lsd

From equations (1) and (2), we derive the following conditions for the coefficients:

co=c Bszsa — EasSs3sa and ¢, = ¢ Bsssa — EsaSs3sa
1= %2 2— "
Egs — €s3s €q—Esq

Introducing normalization factors N, and N4, we can now write the wave functions of the two hybrid orbitals:

(,35 3sd — EasSs3sa

+0u)
Ego — €54 Ps3s T Pa

Bs3sa — EsaSs3sa )
d

Ysqa = Ngg (@S 3s
€d—Lsq
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In the same way, we derive the energies and wave functions for hybridization of the metal d with the S 3p
levels:

2
. (.85 3pd — EdpSS 3p d)
€s 3p_Edp

Eqp = €q

(,BS 3pd — EpdSS 3p d)z

Epd = 653p +

Epa — €
185 3pd — Ed SS3 d
l/)dp = Ndp <(Pd - 2 _EZ" 2 S3p
€s 3p dp
ﬁSB da— E dSS3 d
11l’pd = Ngq 2 _p 2 Pat+ Ps3p
Epa — €q

The emission intensity of photons of energy E generated by transitions from an initial state |i) to a final state
|f) is proportional to E3|(f|%|i)|?, as derived by Dirac**. With the S 2p wave function @g 2p» the “S 3s bands”

represented by the “sd” orbital, the “metal d bands” by the “ds” and “dp” orbitals, and the “S 3p bands” by the
“pd” orbital, we can now simulate the area ratios within our model. For S L, 3 XES, this gives

Id,.S‘L ~ Ids + [dp — (Eds - ES 2p)3|<¢d5|5€|(p5 2p>|2 + (Edp - ES 2p)3|<lpdp|5c\|(p5 2p>|2

3 ~ 2
Lssi lsa (Esd — Eg 2p) |<‘/)sd|x|‘/’5 2p)|
3 — E44S o 2 3 Bsspa — EapSsapa o 2
(Eds - ES Zp) N;s <ﬂ$ 3%’25 —_ g;3f_ 3sd Ps 35 + (pd|x Ps 2p> + (Edp - ES Zp) ij |<(Pd - p653p_§dp £ Ps3p|X (p52p>
B 3 B — EyS o 2
(Esd —Eg Zp) std <‘PS 3s — S3Sd6d_Es-jd $3sd §0d|x 9052p>

With ((,05 3p |9?|<p5 2p> =0 due to the dipole selection rules and assuming
(qod |9? | Qs zp) < ((,05 3s |9? | Qs zp), as also suggested by the vanishing contribution of d symmetry to the S PDOS,
we obtain

3N (353 d~EdsSs35d) % 2
Eqs—Eszp) N sd__ds 535d> X 302 2
last 4, (Bas—Es2p) Ny, Ego—€g 3 |(§DS 3s| |§05 2p>| — (Eas—Es2p) Ngs (Bs3s a—EdsSs 3s d)

I3s,sL (Fea—Fs Zp)3N§d‘<(p5 35‘5\6‘@5- 2p>‘2 (Esa—Es 2p)3N§d (Eds_eg 35)2

Within our model, we approximate dE;oy = E45 — Egq for the S L3 emission, and thus

_ (Bs3sa—EsdaSsssa)® _ dE _ (Bs3sa—EsdSs3sa)®
~ M .
€d—Esa co €d—Esq

Eqs —€s3s = Eqs — Egq

(.BS 3sd—EsdSs3s d)z
€d—Esq

We further approximate = AE, to be independent of dEy), and derive

2 2
lyst, ~ (Eds — Es 2p)3Nds (.85 3sd EdsSS 3s d)
I35t (Esd — Eg 2p)3N§d (dECOM - AEsd)2




Supporting Information

2
We now define the constant C,;5 = % (Bs3sq — E4sSs 35 4)?. Using the Hiickel approximation (Sg 354 = 0)
sd

. . N3 . . .
this simplifies to Cys = N—‘j:ﬁf 35 4> Which we assume to be mostly independent of dEqy. C4s contains the
S

wave function normalization constants and the resonance integral S35 4, which might be interpreted as a
measure for the bonding strength between S 3s and the metal d states. Furthermore, we approximate

3
Egs—E dE ..
(FasFs2p)_ 52”)3 ~1+3— ~ 1, giving
(Esd_ES Zp) Esq—Eg 2p

lassL (dEcoy—BEsq)”

Similarly, we derive an approximation for the intensity ratio of the “metal d bands” and the “S 3p bands” in
the S K emission:
Ca

lask ~ p

fspsK (dECOM_AEpd)Z .
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