Supporting Information

Singlet and triplet excited states of a series of BODIPY dyes as calculated by TDDFT and DLPNO-STEOM-CCSD methods

Aoussaj Sbai¹ and Julien Guthmuller^{1*}

¹Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80233 Gdańsk, Poland.

State	Transition	Weight (%)	Energy(eV)	λ (nm)	f
$S_1 \pi_{BOD} \rightarrow \pi_{BOD}^*$	108a -> 109a	84	3.02	410	0.736
$S_2 \pi_{BOD} \rightarrow \pi_{BOD}^*$	107a -> 109a	93	3.63	341	0.067
$S_3 \pi_{BOD} \rightarrow \pi_{BOD}^*$	106a -> 109a	84	3.66	338	0.496
$S_4 \pi_{Ph} \rightarrow \pi_{BOD}^*$	103a -> 109a	75	4.15	299	0
$S_5 n_I \rightarrow \pi_{BOD}^*$	105a -> 109a	75	4.36	284	0
$S_6 n_I \rightarrow \pi_{BOD}^*$	104a -> 109a	98	4.37	283	0
$S_7 \pi_{BOD} \rightarrow \sigma_I^*$	108a -> 112a	46	4.43	279	0
$S_8 \pi_{BOD} \rightarrow \sigma_I^*$	108a -> 113a	54	4.50	275	0.002
$S_9 \pi_{Ph} \rightarrow \pi_{BOD}^*$	102a -> 109a	98	4.57	271	0.008
$S_{10}\pi_{BOD} \rightarrow \pi_{Ph}^*$	108a -> 110a	94	4.69	264	0
$S_{11} \pi_{BOD} \rightarrow \pi_{BOD}^*$	101a -> 109a	69	4.82	257	0.014
$S_{12}\pi_{BOD} \rightarrow \pi_{Ph}^*$	108a -> 111a	75	4.91	252	0.045
$S_{13} \pi_{BOD} \rightarrow \pi_{BOD}^*$	100a -> 109a	95	5.09	243	0.005
$S_{14}\pi_{BOD} \rightarrow \sigma_I^*$	106a -> 112a	44	5.25	236	0
$S_{15}\pi_{BOD} \rightarrow \sigma_{I}^{*}$	106a -> 113a	33	5.32	233	0
S ₁₆	105a -> 112a	45	5.39	230	0
S ₁₇	104a -> 112a	50	5.39	230	0
S ₁₈	102a -> 110a	45	5.43	228	0
S ₁₉	98a -> 109a	94	5.62	220	0
$S_{20} \pi_{BOD} \rightarrow \pi_{BOD}^*$	99a -> 109a	82	5.71	217	0.219
$S_{21} \pi_{BOD} \rightarrow \pi_{Ph}^*$	106a -> 110a	88	5.80	213	0.001
$S_{22} \pi_{BOD} \rightarrow \pi_{Ph}^*$	107a -> 110a	97	5.88	210	0
$S_{23} \pi_{BOD} \rightarrow \pi_{Ph}^*$	106a -> 111a	94	5.93	209	0.011
$S_{24} \pi_{BOD} \rightarrow \pi_{Ph}^*$	107a -> 111a	96	6.01	206	0.002
S ₂₅	108a -> 114a	63	6.20	200	0.295
S ₂₆	97a -> 109a	92	6.22	199	0
S ₂₇	96a -> 109a	87	6.25	198	0.005
$S_{28} \pi_{BOD} \rightarrow \sigma_{I}^{*}$	100a -> 112a	42	6.38	194	0
$S_{29} \pi_{BOD} \rightarrow \sigma_I^*$	100a -> 113a	38	6.40	193	0
S ₃₀	102a -> 111a	33	6.409	193	0.029

Table S1: Singlet excited state properties of BOD-Ph at the S_0 geometry calculated in a vacuum withMN15.

State	Transition	Weight (%)	Energy(eV)	λ (nm)	f
$T_1 \pi_{BOD} \rightarrow \pi_{BOD}^*$	108a -> 109a	93	1.59	779	0
$T_2 \pi_{BOD} \rightarrow \pi_{BOD}^*$	106a -> 109a	85	2.77	447	0
$T_3 \pi_{BOD} \rightarrow \pi_{BOD}^*$	107a -> 109a	84	2.93	422	0
$T_4 \pi_{BOD} \rightarrow \pi_{BOD}^*$	101a -> 109a	73	3.51	353	0
$T_5 \pi_{BOD} \rightarrow \sigma_I^*$	108a -> 112a	45	3.91	319	0
$T_6 \pi_{BOD} \rightarrow \sigma_I^*$	108a -> 113a	40	3.95	314	0
T ₇	103a -> 110a	55	4.10	302	0
$T_8 \pi_{Ph} \rightarrow \pi_{BOD}^*$	103a -> 109a	75	4.13	300	0
T ₉	105a -> 109a	76	4.34	286	0
T ₁₀	104a -> 109a	98	4.36	285	0
$T_{11}\pi_{Ph} \rightarrow \pi_{BOD}^*$	102a -> 109a	99	4.55	272	0
T ₁₂	105a -> 112a	50	4.60	269	0
T ₁₃	104a -> 112a	52	4.61	269	0
$T_{14} \pi_{BOD} \rightarrow \pi_{Ph}^*$	108a -> 110a	86	4.65	267	0
$T_{15}\pi_{BOD} \rightarrow \pi_{Ph}^*$	108a -> 111a	47	4.69	264	0
T ₁₆	102a -> 110	36	4.73	262	0
T ₁₇	101a -> 109a	14	4.74	261	0
T ₁₈	100a -> 109a	86	4.90	252	0
$T_{19}\pi_{BOD} \rightarrow \sigma_I^*$	108a -> 112a	52	5.10	243	0
T ₂₀	99a -> 109a	53	5.11	243	0
T ₂₁	99a -> 109a	23	5.16	241	0
T ₂₂	102a -> 110a	46	5.19	239	0
$T_{23}\pi_{BOD} \rightarrow \sigma_I^*$	108a -> 113a	48	5.21	238	0
T ₂₄	108a -> 115a	80	5.33	232	0
T ₂₅	98a -> 109a	45	5.54	224	0
T ₂₆	107a -> 115a	17	5.76	215	0
$T_{27} \pi_{BOD} \rightarrow \pi_{Ph}^*$	106a -> 110a	89	5.80	214	0
$T_{28} \pi_{BOD} \rightarrow \pi_{Ph}^*$	107a -> 110a	96	5.88	211	0
T ₂₉	107a -> 111a	32	5.89	211	0
T ₃₀	106a -> 111a	57	5.92	210	0

Table S2: Triplet excited state properties of BOD-Ph at the S_0 geometry calculated in a vacuum withMN15.

Table S3: Molecular orbitals of BOD-Ph at the S_0 geometry calculated in a vacuum with MN15.

Table S4: CDDs of BOD-Ph singlet states at the S₀ geometry calculated in a vacuum with MN15.

Table S5: CDDs of BOD-Ph triplet states at the S_0 geometry calculated in a vacuum with MN15.

CDDtriplets21	CDDtriplets22	CDDtriplets23	CDDtriplets24
•			
CDDtriplets25	CDDtriplets26	CDDtriplets27	CDDtriplets28
CDDtriplets29	CDDtriplets30		

Table S6: Singlet excited state properties of BOD-Ph at the S_0 geometry calculated in a vacuum with DLPNO-STEOM-CCSD/def2-TZVP.

State	Transition	Weight (%)	Energy(eV)	λ (nm)	f	Percentage Active
						Character
$S_1 \pi_{BOD} \rightarrow \pi_{BOD}^*$	108->109 106->109	89 4	2.09	594	0.543	97.82
$S_2 \pi_{BOD} \rightarrow \pi_{BOD}^*$	106->109 108->109	82 7	3.41	363	0.201	97.82
$S_3 \pi_{BOD} \rightarrow \pi_{BOD}^*$	107->109 101->109	76 15	3.48	356	0.067	98.13
$S_4 \pi_{Ph} \rightarrow \pi_{BOD}^*$	105->109 102->109	95 2	4.34	286	0.000	98.24
$S_5 \pi_{BOD} \rightarrow \sigma_1^*$	108->112 107->113	46 28	4.49	276	0.000	99.22
$S_6 \pi_{BOD} \rightarrow \sigma_1^*$	108->113 107->112	37 36	4.56	272	0.000	99.27
$S_7 \pi_{BOD} \rightarrow \pi_{BOD}^*$	101->109 107->109	77 12	4.66	266	0.146	97.99
S ₈	105->111 104->110	47 44	4.68	265	0.000	98.13
$S_9 \pi_{Ph} \rightarrow \pi_{BOD}^*$	104->109	98	4.84	256	0.003	99.30
$S_{10}\pi_{BOD} \rightarrow \pi_{Ph}^*$	108->110	93	4.93	252	0.000	99.31
$S_{11} n_I \rightarrow \pi_{BOD}^*$	102->109	96	5.01	248	0.000	99.24
$S_{12} n_I \rightarrow \pi_{BOD}^*$	103->109	96	5.06	245	0.000	99.47
$S_{13}\pi_{BOD} \rightarrow \pi_{Ph}^*$	108->111	90	5.08	244	0.106	99.15
S ₁₄	102->112 103->113	43 40	5.42	229	0.003	99.27
S ₁₅	103->112 102->113	51 45	5.42	229	0.000	99.22
$S_{16} \pi_{BOD} \rightarrow \sigma_I^*$	108->112 107->113	41 19	5.43	228	0.000	99.09
$S_{17}\pi_{BOD} \rightarrow \pi_{BOD}^*$	100->109	82	5.52	225	0.025	99.00
$S_{18}\pi_{BOD} ightarrow \sigma_I^*$	108->113 107->112	49 18	5.55	223	0.000	99.29
$S_{19}\pi_{BOD} \rightarrow \pi_{BOD}^*$	99->109	84	5.73	216	0.093	98.63
S ₂₀	108->115 108->111	75 5	5.91	210	0.084	98.50
S ₂₁	108->114	85	6.08	204	0.000	98.92
S ₂₂	108->119 108->117	79 7	6.11	203	0.149	97.74
S ₂₃	105->110 104->111	49 24	6.19	200	0.007	98.17
$S_{24} \pi_{BOD} \rightarrow \sigma_I^*$	100->112 99->113	53 26	6.53	190	0.000	99.06
$S_{25}\pi_{\rm BOD}\to\sigma_{\rm I}*$	100->113 99->112	46 30	6.56	189	0.000	99.07

S ₂₆	104->110 105->111	41 38	6.92	179	0.257	94.85
S ₂₇	104->111 105->110	42 17	6.95	178	0.555	96.12
S ₂₈	108->118 104->110 105->111	58 9 10	7.02	177	0.119	91.66
S ₂₉	108->116 106->114	31 32	7.17	173	0.004	96.85
S ₃₀	108->117 101->111	59 8	7.38	168	0.012	88.55

Table S7: Triplet excited state properties of BOD-Ph at the S_0 geometry calculated in a vacuum with DLPNO-STEOM-CCSD/def2-TZVP.

State	Transition	Weight (%)	Energy(eV)	λ(nm)	f	Percentage
						Active
$T_1 \pi_{BOD} \rightarrow \pi_{BOD}^*$	108 -> 109	94	1.38	902	0	99.32
$T_2 \pi_{BOD} \rightarrow \pi_{BOD}^*$	106 -> 109	77	2.56	485	0	99.09
	100 -> 109	11				
$T_3 \pi_{BOD} \to \pi_{BOD}^*$	107 -> 109	54	2.74	452	0	98.37
	101 -> 109	33				
$T_4 \pi_{BOD} \rightarrow \pi_{BOD}^*$	101 -> 109	46	3.27	379	0	98.58
	107 -> 109	29				
T ₅	105 -> 110	51	3.44	360	0	96.39
	104 -> 111	41				
$T_6 \pi_{BOD} \rightarrow \sigma_I^*$	108 -> 112	36	4.02	308	0	99.25
	107 -> 113	33				
$T_7 \pi_{BOD} \rightarrow \sigma_I^*$	107 -> 112	40	4.07	304	0	99.34
	108 -> 113	30				
$T_8 \pi_{Ph} \rightarrow \pi_{BOD}^*$	105 -> 109	94	4.33	287	0	97.85
T9	108 -> 115	57	4.61	269	0	98.96
	108 -> 111	25				
T ₁₀	104 -> 111	54	4.62	268	0	99.19
	105 -> 110	41				
T ₁₁	104 -> 110	47	4.62	268	0	99.14
	105 -> 111	48				
T ₁₂	102 -> 112	50	4.79	259	0	99.28
	103 -> 113	47				
T ₁₃	102 -> 113	46	4.79	259	0	99.27
	103 -> 112	51				
$T_{14}\pi_{Ph} \rightarrow \pi_{BOD}^*$	104 -> 109	98	4.80	259	0	99.56
$T_{15}\pi_{BOD}\to {\pi_{Ph}}^*$	108 -> 110	92	4.88	254	0	99.19
$T_{16} n_I \rightarrow \pi_{BOD}^*$	102 -> 109	96	4.99	248	0	99.15
T ₁₇	108 -> 116	72	5.04	246	0	98.47
	106 -> 116	4				
T ₁₈	103 -> 109	97	5.04	246	0	99.53

T ₁₉	103 -> 109	97	5.04	246	0	99.52
$T_{20}\pi_{BOD}\to\pi_{Ph}^{*}$	108 -> 111 108 -> 115	67 23	5.31	234	0	99.48
$T_{21}\pi_{BOD} \rightarrow \sigma_{I}^{*}$	108 -> 112 106 -> 112	50 21	5.32	233	0	98.52
$T_{22}\pi_{BOD} \rightarrow \sigma_{I}^{*}$	108 -> 113 106 -> 113	53 14	5.47	227	0	98.92
T ₂₃	104 -> 110 105 -> 111	49 44	5.53	224	0	99.44
T ₂₄	108 -> 117 107 -> 116	30 20	5.58	222	0	98.94
$T_{25}\pi_{BOD} \rightarrow \pi_{BOD}^*$	108 -> 117 106 -> 115	30 12	5.59	222	0	99.07
T ₂₆	106 -> 116 101 -> 115	33 14	5.83	213	0	97.42
T ₂₇	108 -> 114 108 -> 119	78 8	5.95	209	0	86.31
T ₂₈	100 -> 112 99 -> 113	46 24	6.07	204	0	98.34
T ₂₉	100 -> 113 99 -> 112	41 28	6.10	203	0	98.63
T ₃₀	97 -> 112 98 -> 113	45 47	6.63	187	0	95.12

Table S8: Singlet excited state properties of BOD-Ph at the S0 geometry calculated in a vacuur	n with
DLPNO-STEOM-CCSD/def2-SVP.	

State	Transition	Weight (%)	Energy(eV)	λ (nm)	f	Percentage
						Active
						Character
\mathbf{S}_1	108 -> 109	88	2.10	591	0.536	98.08
S_2	106 -> 109	81	3.47	358	0.226	98.30
S ₃	107 -> 109	78	3.49	356	0.076	98.85
S ₄	105 -> 109	95	4.44	279	0.000	98.88
S ₅	104 -> 110	48	4.71	263	0.000	98.59
S ₆	101 -> 109	79	4.73	262	0.149	98.21
S ₇	108 -> 112	41	4.75	261	0.000	99.32
S ₈	107 -> 112	38	4.80	258	0.001	99.33
S ₉	104 -> 109	98	4.94	251	0.003	99.67
S ₁₀	103 -> 109	94	4.99	248	0.000	98.51
S ₁₁	102 -> 109	97	5.02	247	0.000	99.58
S ₁₂	108 -> 110	97	5.17	240	0.000	99.53
S ₁₃	108 -> 111	91	5.40	229	0.069	99.38
S ₁₄	100 -> 109	84	5.47	227	0.035	98.78
S ₁₅	102 -> 112	33	5.61	221	0.000	99.18
S ₁₆	103 -> 112	32	5.61	221	0.000	99.11
S ₁₇	99 -> 109	82	5.71	217	0.090	98.79
S ₁₈	108 -> 112	45	5.74	216	0.000	99.26

S ₁₉	106 -> 113	22	5.86	212	0.001	99.45
S ₂₀	108 -> 114	75	6.12	203	0.080	98.75
S ₂₁	108 -> 116	82	6.37	195	0.046	98.11
S ₂₂	98 -> 109	92	6.59	188	0.000	94.88
S ₂₃	107 -> 111	33	6.78	183	0.593	97.48
S ₂₄	100 -> 112	51	6.80	182	0.000	99.12
S ₂₅	100 -> 113	46	6.82	182	0.000	99.19
S ₂₆	104 -> 111	40	7.25	171	0.556	96.67
S ₂₇	104 -> 110	45	7.28	170	0.386	95.11

Table S9: Triplet excited state properties of BOD-Ph at the S_0 geometry calculated in a vacuum with DLPNO-STEOM-CCSD/def2-SVP.

State	Transition	Weight (%)	Energy(eV)	λ (nm)	f	Percentage Active Character
T ₁	108 -> 109	95	1.44	860	0	99.44
T ₂	106 -> 109	75	2.59	480	0	99.16
T ₃	107 -> 109 101 -> 109	54 55	2.76	449	0	98.34
T ₄	101 -> 109 107 -> 109	44 29	3.33	373	0	98.53
T ₅	105 -> 110 104 -> 111	51 41	3.41	364	0	96.54
T ₆	107 -> 113 108 -> 112	35 33	4.18	297	0	99.40
T ₇	107 -> 112	40	4.22	294	0	99.43
T ₈	105 -> 109	95	4.45	279	0	98.08
T ₉	104 -> 111 105 -> 110	43 33	4.77	260	0	99.36
T ₁₀	104 -> 110 105 -> 111	38 37	4.77	260	0	99.31
T ₁₁	108 -> 114	65	4.80	258	0	98.82
T ₁₂	102 -> 112 103 -> 112	32 26	4.88	254	0	99.46
T ₁₃	102 -> 112 103 -> 112	31 26	4.88	254	0	99.49
T ₁₄	104 -> 109	98	4.91	253	0	99.61
T ₁₅	103 -> 109	92	4.98	249	0	98.63
T ₁₆	102 -> 109	92	5.01	248	0	99.57
T ₁₇	108 -> 110	96	5.17	240	0	99.13
T ₁₈	108 -> 115 102 -> 109	49 24	5.20	239	0	98.29
T ₁₉	100 -> 109 99 -> 109	43 13	5.53	224	0	97.20

T ₂₀	108 -> 111	54	5.57	223	0	99.22
	108 -> 116	14				
T ₂₁	99 -> 109	19	5.57	223	0	99.22
	108 -> 116	11				
T ₂₂	108 -> 112	53	5.58	222	0	98.83
	106 -> 112	16				
T ₂₃	99 -> 109	65	5.63	220	0	99.35
T ₂₄	108 -> 113	56	5.72	217	0	99.06
T ₂₅	104 -> 110	47	5.88	211	0	99.67
	105 -> 111	47				
T ₂₆	100 -> 113	29	6.38	194	0	98.28
	99 -> 112	17				
T ₂₇	97 -> 112	27	6.82	182	0	94.46
	98 -> 112	28				
T ₂₈	98 -> 113	32	6.84	181	0	94.75
	97 -> 112	22				
T ₂₉	108 -> 117	54	6.87	181	0	91.46
T ₃₀	108 -> 117	54	6.87	180	0	91.53

Table S10: Molecular orbitals of BOD-Ph at the S_0 geometry calculated in a vacuum with DLPNO-STEOM-CCSD/def2-TZVP.

				TDA COC	TDA COC	
		IDA	IDA	TDA 505-	1DA 505-	DLPNO-
State	B3LYP	B3LYP	MN15	PBE-QIDH	ωPBEPP86 ^a	STEOM-CCSD
$\pi_{\rm BOD} \rightarrow \pi_{\rm BOD}^*$	2.69	2.88	3.02	2.73	2.65 (2.58)	2.09
	3.15	3.23	3.64	3.49	3.54 (3.48)	3.41
	3.25	3.55	3.66	3.52	3.65 (3.61)	3.48
$\pi_{BOD} \rightarrow \sigma_I^*$	4.17	4.20	4.44	4.80	4.85 (4.63)	4.49
	4.30	4.32	4.50	4.89	4.89 (4.69)	4.56
	4.81	4.84	5.25	5.62	5.86 (5.58)	5.43
	4.83	4.85	5.32	5.76	6.01 (5.73)	5.55
$\pi_{\rm BOD} \rightarrow \pi_{\rm Ph}^*$	4.15	4.16	4.69	4.91	5.19 (5.03)	4.93
	4.25	4.26	4.91	5.21	5.43 (5.16)	5.08
$\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^{*}$	3.82	3.82	4.15	4.49	4.60 (4.50)	4.34
	4.00	4.01	4.57	4.77	4.98 (4.87)	4.84

Table S11: Singlet transition energies of BOD-Ph at the S_0 geometry calculated in a vacuum with different methods. All values are in eV.

^a Values given in brackets for SOS-@PBEPP86 were calculated with the def2-TZVP basis set.

Table S12: Triplet transition energies of BOD-Ph at the S_0 geometry calculated in a vacuum with different methods. All values are in eV.

		TDA	TDA	TDA SOS-	TDA SOS-	DLPNO-
State	B3LYP	B3LYP	MN15	PBE-QIDH	ωPBEPP86 ^a	STEOM-CCSD
$\pi_{\rm BOD} \rightarrow \pi_{\rm BOD}^{*}$	1.50	1.62	1.59	1.77	1.69 (1.65)	1.38
	2.43	2.51	2.77	2.89	2.93 (2.90)	2.56
	2.57	2.64	2.93	3.12	3.18 (3.17)	2.74
	3.23	3.36	3.51	3.67	3.63 (3.60)	3.27
$\pi_{BOD} \rightarrow \sigma_{I}^{*}$	3.79	3.82	3.91	4.28	4.27 (4.15)	4.02
	3.86	3.89	3.95	4.32	4.29 (4.19)	4.07
	4.60	4.59	5.10	5.60	5.86 (5.62)	5.32
	4.58	4.65	5.21	5.74	6.32 (5.79)	5.47
$\pi_{\rm BOD} \rightarrow {\pi_{\rm Ph}}^*$	4.13	4.14	4.65	4.98	5.16 (5.01)	4.88
	4.19	4.20	4.69	5.62	5.78 (5.45)	5.31
$\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^{*}$	3.80	3.80	4.13	4.46	4.58 (4.48)	4.33
	3.98	3.98	4.55	4.80	4.96 (4.86)	4.80

^a Values given in brackets for SOS-@PBEPP86 were calculated with the def2-TZVP basis set.

	B3I	LYP	M	N15
State	Singlets	Triplets	Singlets	Triplets
$\pi_{\rm BOD} \rightarrow \pi_{\rm BOD}^{*}$	3.02	1.59	3.02	1.66
	3.64	2.77	3.64	2.81
	3.66	2.94	3.68	2.96
	-	3.51	-	3.52
$\pi_{BOD} \rightarrow \sigma_I^*$	4.44	3.91	4.54	4.08
	4.50	3.95	4.60	4.11
	5.25	5.10	5.38	5.24
	5.32	5.21	5.44	5.34
$\pi_{BOD} \rightarrow \pi_{Ph}^*$	4.69	4.65	4.76	4.71
	4.91	4.69	4.93	4.75
$\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^*$	4.15	4.13	4.14	4.01
	4.57	4.55	4.57	4.47

Table S13: Vertical transition energies of BOD-Ph for the selected excited states calculated with MN15 in a vacuum at the S_0 geometry, optimized with B3LYP and MN15. All values are in eV.

Table S14: Singlet transition energies at the S_0 geometry calculated with MN15 in a vacuum and in DCM. All values are in eV.

	BOD-	BOD-	BOD-	BOD-	BOD-	BOD-
State	Ph(Vac)	Ph(DCM)	PhOH(Vac)	PhOH(DCM)	PhNO ₂ (Vac)	PhNO ₂ (DCM)
$\pi_{\rm BOD} \rightarrow \pi_{\rm BOD}^{*}$	3.02	2.90	3.02	2.90	2.96	2.86
	3.64	3.64	3.66	3.66	3.56	3.58
	3.68	3.62	3.68	3.63	3.66	3.60
$\pi_{BOD} \rightarrow \sigma_I^*$	4.54	4.59	4.54	4.59	4.58	4.67
	4.60	4.65	4.60	4.65	4.63	4.67
	5.38	5.42	5.37	5.41	5.43	5.51
	5.44	5.49	5.44	5.49	5.48	5.51
$\pi_{\rm BOD} \rightarrow \pi_{\rm Ph}^{*}$	4.76	5.05	5.11	5.44	3.45	3.51
	4.93	5.22	4.81	5.16	4.51	4.59
$\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^{*}$	4.14	3.90	3.57	3.29	4.85	4.41
	4.57	4.28	4.67	4.36	5.15	4.66

Table S15: Triplet transition energies at the S_0 geometry calculated with MN15 in a vacuum and in DCM. All values are in eV.

	BOD-	BOD-	BOD-	BOD-	BOD-	BOD-
State	Ph(Vac)	Ph(DCM)	PhOH(Vac)	PhOH(DCM)	PhNO ₂ (Vac)	PhNO ₂ (DCM)
$\pi_{\rm BOD} \rightarrow \pi_{\rm BOD}^*$	1.66	1.69	1.67	1.71	1.61	1.65
	2.81	2.83	2.81	2.84	2.76	2.79
	2.96	3.00	2.97	3.00	2.90	2.95
	3.52	3.50	3.70	3.65	3.54	3.54
$\pi_{BOD} \rightarrow \sigma_I^*$	4.08	4.14	4.11	4.13	4.09	4.15
	4.11	4.17	4.17	4.17	4.13	4.18
	5.24	5.29	5.24	5.28	5.29	5.32
	5.34	5.40	5.10	5.30	5.35	5.33
$\pi_{\rm BOD} \rightarrow \pi_{\rm Ph}^*$	4.71	5.01	5.06	5.25	3.42	3.50
	4.75	4.86	5.10	5.28	4.46	4.61
$\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^*$	4.01	3.87	3.34	3.13	4.74	4.70
	4.47	4.20	4.61	4.26	5.02	4.75

Figure S1: Energy diagrams for selected singlet and triplet states of BOD-Ph, BOD-PhOH and BOD-PhNO₂. The calculations were performed at different geometries in DCM with TDA-TDDFT (MN15).

	Geometry						
State	S_0	S ₁	S	S	Т	Т	
		$(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	
$S_1(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	2.73	2.68	2.90	2.87	2.88	2.93	
$S(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	3.89	3.88	3.65	3.96	3.72	4.23	
$S(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	5.05	5.24	5.20	4.80	5.04	5.05	
$T(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	3.87	3.87	3.71	3.78	3.65	4.54	
$T(\pi_{BOD} \rightarrow \pi_{Ph}^{*})$	4.86	4.88	5.19	4.88	5.10	4.63	

Table S16: Energies (eV) for selected BOD-Ph states at their optimized geometries, calculated with TDA-TDDFT (MN15) in DCM.

Table S17: Energies (eV) for selected BOD-PhNO₂ states at their optimized geometries, calculated with TDA-TDDFT (MN15) in DCM.

	Geometry							
State	S_0	S ₁	S	S	Т	Т		
		$(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$		
$S_1(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	2.69	2.59	3.06	-	3.06	2.92		
$S(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	3.54	3.66	3.10	-	3.11	3.84		
$S(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	4.40	4.21	4.86	-	4.80	4.15		
$T(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	3.50	3.58	3.09	-	3.08	3.83		
$T(\pi_{\rm Ph} \rightarrow \pi_{\rm BOD}^*)$	4.70	4.71	4.93	-	4.87	4.47		

Table S18: Energies (eV) for selected BOD-PhOH states at their optimized geometries, calculated with TDA-TDDFT (MN15) in DCM.

	Geometry						
State	S ₀	S ₁	S	S	Т	Т	
		$(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	
$S_1(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	2.73	2.68	2.93	3.00	2.97	2.83	
$S(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	3.27	3.28	3.01	3.82	3.30	3.52	
$S(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	5.16	5.20	5.64	4.86	5.12	5.10	
$T(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	3.13	2.94	2.98	3.70	2.68	3.41	
$T(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	5.25	4.87	5.25	5.19	5.23	4.68	

Table S19: Energies (eV) for selected BOD-PhOH states at their optimized TDA-TDDFT geometries, calculated with DLPNO-STEOM-CCSD in DCM.

	Geometry						
State	S ₀	S ₁	S	S	Т	Т	
		$(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	$(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	$(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	
$S_1(\pi_{BOD} \rightarrow \pi_{BOD}^*)$	2.12	2.07	2.45	2.46	2.46	2.31	
$S(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	2.96	2.98	2.72	3.52	2.96	3.20	
$S(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	5.01	5.11	5.84	4.96	5.66	4.99	
$T(\pi_{Ph} \rightarrow \pi_{BOD}^*)$	3.01	2.85	2.74	3.61	2.50	3.65	
$T(\pi_{BOD} \rightarrow \pi_{Ph}^*)$	-	-	-	-	-	-	

6	0.61346	-0.48889	-0.30262
6	1.209974	-1.66303	-2.10151
6	1.286471	-1.65171	0.188061
7	0.601564	-0.5387	-1.69405
6	0.023367	0.590668	0.376523
6	-0.57973	1.642721	-0.333
5	0.063678	0.569219	-2.64097
7	-0.57782	1.64794	-1.72531
6	-1.29253	2.795703	0.124836
6	-1.2346	2.731972	-2.16434
9	-0.88861	0.045172	-3.50594
9	1.112728	1.122829	-3.3721
6	0.939353	1.421262	2.549752
6	0.024873	0.613715	1.862514
6	-0.8886	-0.17169	2.57648
6	0.942949	1.437079	3.945505
1	1.661177	2.062848	4.479204
6	0.027194	0.657656	4.657334
6	-0.88989	-0.14368	3.971903
1	-1.6072	-0.75232	4.526258
1	1.647567	2.033936	1.986133
1	-1.59791	-0.80156	2.033459
1	0.028149	0.674802	5.749125
6	1.577903	-2.05004	1.598297
1	1.919553	-1.20109	2.2056
1	2.35274	-2.8289	1.612147
1	0.683435	-2.45858	2.093073
6	1.347893	-2.02245	-3.53815
1	0.372436	-2.3187	-3.95275
1	2.052426	-2.85336	-3.66483
1	1.69589	-1.15277	-4.11229
6	-1.58403	3.229885	1.524327
1	-2.36009	4.007426	1.519564
1	-0.68918	3.649854	2.008358
1	-1.92439	2.395844	2.153037
6	-1.42863	3.020102	-3.6105
1	-0.50099	2.81973	-4.16338
1	-1.73052	4.063932	-3.76076
1	-2.2085	2.365334	-4.02856
6	1.640798	-2.37281	-0.95524
53	2.635947	-4.20139	-1.007
6	-1.68704	3.461226	-1.03841
53	-2.77428	5.234034	-1.14717

6	0.600502	-0.48774	-0.30406
6	1.160809	-1.6888	-2.09778
6	1.279844	-1.64511	0.189688
7	0.566454	-0.55492	-1.69439
6	0.031066	0.606444	0.372157
6	-0.5582	1.662997	-0.34469
5	0.052086	0.558786	-2.64695
7	-0.5507	1.663814	-1.73704
6	-1.27037	2.819063	0.105873
6	-1.19775	2.751314	-2.18281
9	-0.92295	0.054969	-3.49923
9	1.110462	1.074103	-3.39299
6	0.892249	1.509679	2.544794
6	0.037087	0.638982	1.854644
6	-0.8144	-0.19812	2.584926
6	0.904379	1.538071	3.93532
1	1.57286	2.205474	4.482046
6	0.042256	0.703902	4.662584
6	-0.82123	-0.16237	3.977543
1	-1.49505	-0.81176	4.542729
1	1.558298	2.1689	1.982078
1	-1.48324	-0.88259	2.056757
6	1.614686	-2.02071	1.596802
1	1.917938	-1.15167	2.195707
1	2.431418	-2.75606	1.59938
1	0.75394	-2.47875	2.108183
6	1.274246	-2.0658	-3.53219
1	0.285154	-2.3269	-3.93767
1	1.946195	-2.9235	-3.65678
1	1.650995	-1.21485	-4.11645
6	-1.58611	3.253345	1.500287
1	-2.40498	3.985915	1.484653
1	-0.71855	3.732787	1.979137
1	-1.87752	2.409372	2.139999
6	-1.38565	3.035486	-3.63067
1	-0.46466	2.806863	-4.18348
1	-1.65979	4.086214	-3.78672
1	-2.184	2.400166	-4.04393
6	1.607551	-2.38502	-0.9503
53	2.59375	-4.21882	-0.99124
6	-1.65135	3.485812	-1.06169
53	-2.72755	5.26476	-1.17954
8	0.08185	0.772768	6.007707
1	-0.55381	0.15742	6.403111

6	0.172144	1.211729	-1.05985
6	1.306808	2.953018	-1.86405
6	-0.21928	1.341745	-2.43039
7	1.102648	2.205524	-0.7693
6	-0.22585	0.302264	-0.0667
6	0.304331	0.369526	1.231562
5	1.858189	2.383613	0.577385
7	1.259027	1.330764	1.55146
6	0.016181	-0.39442	2.407492
6	1.589028	1.211759	2.845673
9	1.661375	3.664527	1.074844
9	3.218444	2.148072	0.395676
6	-0.82013	-2.05093	-0.66664
6	-1.23516	-0.74101	-0.39119
6	-2.59668	-0.40983	-0.4202
6	-1.75972	-3.03134	-0.97535
1	-1.46939	-4.05761	-1.19788
6	-3.10578	-2.67537	-0.99323
6	-3.54647	-1.38311	-0.71954
1	-4.61231	-1.1588	-0.74662
1	0.242854	-2.29987	-0.63997
1	-2.91029	0.614013	-0.20541
6	-1.17573	0.510008	-3.22143
1	-1.0257	-0.56529	-3.05476
1	-1.0499	0.716569	-4.29296
1	-2.22021	0.736942	-2.95833
6	2.235859	4.113877	-1.87827
1	1.804168	4.954071	-1.31344
1	2.43063	4.442951	-2.90614
1	3.18274	3.844617	-1.39057
6	-0.94182	-1.52732	2.583218
1	-1.07444	-1.74098	3.652385
1	-0.57279	-2.4451	2.100763
1	-1.92664	-1.30741	2.148673
6	2.573857	2.108373	3.506763
1	3.441391	2.264887	2.851602
1	2.903864	1.684155	4.462913
1	2.123053	3.09451	3.696586
6	0.49718	2.441133	-2.90762
53	0.413602	3.236382	-4.82971
6	0.833478	0.149203	3.400202
53	0.950481	-0.46153	5.386984
7	-4.10441	-3.70801	-1.31471
8	-5.27435	-3.37728	-1.3258
8	-3.69986	-4.83017	-1.54997

6	0.585527	-0.51007	-0.29103
6	1.121492	-1.69703	-2.12124
6	1.27972	-1.66137	0.182874
7	0.531241	-0.56583	-1.69682
6	0.010619	0.582008	0.41355
6	-0.57779	1.646796	-0.32132
5	0.015085	0.541007	-2.64138
7	-0.53744	1.656739	-1.72852
6	-1.28316	2.803849	0.121195
6	-1.14999	2.763403	-2.18434
9	-0.99434	0.048138	-3.46984
9	1.057132	1.026322	-3.43549
6	0.824021	1.525744	2.584312
6	0.017556	0.608007	1.893828
6	-0.7842	-0.28304	2.623807
6	0.83122	1.548878	3.979434
1	1.46754	2.262252	4.507645
6	0.026722	0.661032	4.699463
6	-0.78227	-0.25346	4.018742
1	-1.41516	-0.94615	4.577705
1	1.449314	2.219767	2.016291
1	-1.41374	-0.99739	2.086481
1	0.030185	0.681749	5.791307
6	1.652136	-2.03366	1.581384
1	1.96175	-1.15991	2.170943
1	2.483098	-2.75362	1.564992
1	0.817255	-2.50534	2.124646
6	1.240807	-2.04717	-3.55698
1	0.245981	-2.0739	-4.02881
1	1.734887	-3.01747	-3.68627
1	1.813822	-1.27107	-4.08984
6	-1.64468	3.218768	1.510556
1	-2.48082	3.932148	1.479303
1	-0.80755	3.713231	2.029495
1	-1.94206	2.362681	2.131608
6	-1.29549	3.060392	-3.62964
1	-0.32209	2.970519	-4.13583
1	-1.70335	4.066422	-3.78537
1	-1.9624	2.323375	-4.10662
6	1.586943	-2.39809	-0.976
53	2.581198	-4.20765	-1.04422
6	-1.61436	3.495768	-1.05842
53	-2.63734	5.286447	-1.17897

6	0.582372	-0.49987	-0.29391
6	1.102546	-1.70591	-2.1166
6	1.279734	-1.64724	0.185561
7	0.517156	-0.56952	-1.69854
6	0.013977	0.599362	0.406232
6	-0.57265	1.660596	-0.33668
5	-0.00069	0.53046	-2.64969
7	-0.53497	1.660549	-1.74402
6	-1.27261	2.823796	0.09867
6	-1.14247	2.767472	-2.20671
9	-1.0228	0.036123	-3.46243
9	1.036364	0.998523	-3.46072
6	0.817213	1.56533	2.577104
6	0.024757	0.635024	1.884475
6	-0.75766	-0.25869	2.629789
6	0.832956	1.601345	3.967513
1	1.453073	2.318218	4.50898
6	0.042123	0.705652	4.701904
6	-0.75586	-0.22509	4.02269
1	-1.376	-0.92227	4.592965
1	1.433829	2.268034	2.010163
1	-1.38163	-0.98895	2.107607
6	1.666997	-2.00456	1.58405
1	1.975076	-1.12322	2.163021
1	2.502723	-2.71909	1.566577
1	0.840738	-2.47749	2.139416
6	1.210969	-2.06977	-3.54984
1	0.214135	-2.08375	-4.01782
1	1.688902	-3.04898	-3.67272
1	1.794919	-1.30795	-4.09152
6	-1.63362	3.248844	1.485189
1	-2.47114	3.96051	1.449048
1	-0.79769	3.74945	2.000212
1	-1.92813	2.39674	2.113026
6	-1.28848	3.055273	-3.65383
1	-0.31419	2.968748	-4.15902
1	-1.70246	4.057797	-3.81581
1	-1.9499	2.310879	-4.12695
6	1.57642	-2.39583	-0.96839
53	2.568781	-4.20737	-1.02673
6	-1.6016	3.509481	-1.08524
53	-2.61609	5.304715	-1.21617
8	0.083863	0.779585	6.048761
1	-0.50076	0.116921	6.445888

6	0.100666	1.252768	-1.04308
6	1.153832	3.092405	-1.77671
6	-0.23485	1.366578	-2.42397
7	0.969745	2.305584	-0.70446
6	-0.27552	0.284252	-0.07061
6	0.32348	0.332345	1.219393
5	1.788547	2.43596	0.601477
7	1.348699	1.254254	1.497586
6	0.051047	-0.41518	2.402345
6	1.762179	1.090408	2.764423
9	1.514761	3.645244	1.237993
9	3.151471	2.36205	0.319595
6	-0.92142	-2.11578	-0.33496
6	-1.26822	-0.75064	-0.39386
6	-2.57923	-0.39071	-0.76671
6	-1.85182	-3.09786	-0.64658
1	-1.59925	-4.15746	-0.62395
6	-3.14408	-2.70624	-1.00466
6	-3.52375	-1.36325	-1.06559
1	-4.54673	-1.10681	-1.33907
1	0.09683	-2.39679	-0.05625
1	-2.85321	0.666215	-0.80308
6	-1.01989	0.438496	-3.29193
1	-0.86654	-0.61139	-3.00797
1	-0.70908	0.562812	-4.33936
1	-2.10414	0.630213	-3.24675
6	2.049775	4.273161	-1.76192
1	1.859948	4.88364	-0.86683
1	1.914796	4.8802	-2.66526
1	3.102415	3.949754	-1.70319
6	-1.02017	-1.42217	2.665873
1	-1.2404	-1.45199	3.742808
1	-0.72915	-2.4408	2.362443
1	-1.94756	-1.17921	2.129838
6	2.810511	1.936474	3.382719
1	3.673489	2.027729	2.706822
1	3.131279	1.523111	4.346552
1	2.427922	2.958381	3.542169
6	0.405919	2.541286	-2.85423
53	0.341592	3.341933	-4.75476
6	0.983866	0.050539	3.345001
53	1.186328	-0.60606	5.290524
7	-4.12942	-3.73347	-1.32549
8	-5.24959	-3.37043	-1.64511
8	-3.78064	-4.90069	-1.25704

6	-1.23716	0.23662	0.014135
6	-2.53848	-1.59094	0.001025
6	-2.57365	0.704268	0.020006
7	-1.24429	-1.14206	0.009671
6	-0.00022	0.952038	0.029785
6	1.235775	0.235996	0.029245
5	-0.00123	-2.06057	0.061458
7	1.242341	-1.14297	0.03176
6	2.572333	0.703069	-0.00178
6	2.535784	-1.5921	0.011573
9	0.011012	-2.92659	-1.03543
9	-0.0156	-2.8231	1.237548
6	0.297877	3.148311	1.220055
6	0.000329	2.411855	0.022414
6	-0.29257	3.134074	-1.18568
6	0.299239	4.525565	1.205364
1	0.519755	5.091795	2.110646
6	0.013943	5.209782	0.001659
6	-0.27909	4.511302	-1.19167
1	-0.49372	5.066403	-2.10523
1	0.508098	2.587672	2.132522
1	-0.5087	2.561832	-2.08957
1	0.019552	6.301145	-0.00618
6	-3.06924	2.112087	0.02945
1	-2.59579	2.736128	0.80138
1	-4.15362	2.127733	0.217477
1	-2.91687	2.611633	-0.94469
6	-2.8736	-3.04203	-0.027
1	-2.56719	-3.50047	-0.97972
1	-3.95375	-3.18895	0.102535
1	-2.33819	-3.5745	0.772252
6	3.067815	2.111106	-0.01182
1	4.152121	2.126941	-0.1995
1	2.91374	2.61069	0.961781
1	2.594328	2.735131	-0.78406
6	2.8702	-3.04364	-0.00378
1	2.318202	-3.57182	0.787045
1	3.947125	-3.19159	0.148767
1	2.582263	-3.50583	-0.96045
6	-3.36756	-0.47335	-0.00253
53	-5.45066	-0.53177	-0.01042
6	3.365556	-0.47472	-0.00049
53	5.448203	-0.53718	-0.05262

6	-1.23097	0.040304	-0.03521
6	-2.51985	-1.78558	0.041652
6	-2.56329	0.508766	-0.06435
7	-1.22586	-1.34433	0.028261
6	-0.00056	0.757238	-0.05393
6	1.242753	0.04717	-0.02703
5	0.012031	-2.26101	0.090543
7	1.254569	-1.34062	0.006662
6	2.568539	0.523376	-0.04892
6	2.54721	-1.77741	-0.0011
9	0.012069	-3.16862	-0.97786
9	0.034505	-2.99225	1.287911
6	0.027293	2.894192	1.263807
6	-0.00748	2.216869	-0.00182
6	-0.0687	3.004007	-1.20664
6	0.003248	4.258511	1.329936
1	0.02735	4.801241	2.274729
6	-0.05676	5.016512	0.115459
6	-0.09234	4.370332	-1.15749
1	-0.14378	4.973653	-2.06574
1	0.075649	2.292971	2.172518
1	-0.09932	2.481865	-2.16378
6	-3.0564	1.920466	-0.16479
1	-2.67774	2.568488	0.641972
1	-4.15343	1.939634	-0.08807
1	-2.79412	2.395812	-1.1231
6	-2.85803	-3.23628	0.099624
1	-2.47656	-3.76288	-0.78729
1	-3.94513	-3.37979	0.158492
1	-2.38566	-3.70791	0.973681
6	3.053684	1.937671	-0.09991
1	4.148426	1.95683	-0.20074
1	2.797667	2.516946	0.800459
1	2.647866	2.487408	-0.96542
6	2.89849	-3.2259	0.038428
1	2.508769	-3.69307	0.955428
1	3.987068	-3.36191	0.003355
1	2.441305	-3.76095	-0.80644
6	-3.34859	-0.66436	-0.01306
53	-5.44277	-0.73312	-0.03899
6	3.370093	-0.65134	-0.03808
53	5.454543	-0.68996	-0.04405
8	-0.07475	6.314117	0.23647
1	-0.11473	6.782071	-0.61804

6	-1.21746	0.204647	0.044224
6	-2.53834	-1.57823	0.02153
6	-2.5774	0.714088	0.0185
7	-1.26295	-1.18976	0.048728
6	-0.00857	0.928772	0.045748
6	1.189713	0.185943	0.043771
5	-0.03136	-2.14797	0.093031
7	1.214378	-1.2088	0.048775
6	2.558372	0.67476	0.017637
6	2.484121	-1.61688	0.021838
9	-0.03805	-2.98587	-1.00429
9	-0.03723	-2.87636	1.269983
6	0.055387	3.144385	1.267542
6	0.005806	2.390046	0.034058
6	0.050675	3.123395	-1.21317
6	0.16905	4.518916	1.236554
1	0.201671	5.065952	2.184387
6	0.238548	5.241251	0.008863
6	0.164487	4.498588	-1.20515
1	0.193648	5.029688	-2.16219
1	0.004283	2.616369	2.224779
1	-0.0042	2.579241	-2.16116
1	0.328746	6.327594	-0.00054
6	-2.99992	2.138476	0.010993
1	-2.59698	2.669328	0.886475
1	-4.09599	2.209419	0.002818
1	-2.5859	2.663488	-0.86312
6	-2.93927	-3.00076	-0.01184
1	-2.79209	-3.39233	-1.03172
1	-3.99406	-3.12057	0.260673
1	-2.29793	-3.5883	0.658731
6	3.003679	2.091383	0.008771
1	4.100421	2.146271	0.000348
1	2.606469	2.630158	0.882746
1	2.595076	2.622393	-0.86501
6	2.862741	-3.04549	-0.01048
1	2.215019	-3.62167	0.66388
1	3.9166	-3.18137	0.258027
1	2.704874	-3.43674	-1.02886
6	-3.38003	-0.40714	0.001346
53	-5.45164	-0.47125	-0.05168
6	3.343343	-0.45938	0.001058
53	5.411735	-0.55535	-0.0521

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5005 5005 5005 5002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	884 163 296 77 902 091 373 476 798 57 294 54 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163 296 77 902 091 373 476 798 57 294 94 54 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	296 77 902 091 373 476 798 57 294 94 54 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77 902 091 373 476 798 57 294 54 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	902 091 373 476 798 57 294 94 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	091 373 476 798 57 294 94 54 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	373 476 798 57 294 94 54 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	476 798 57 294 54 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	798 57 294 94 532 215 418 836 022 744
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57 294 94 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	294 94 54 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	94 54 532 215 418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 532 215 418 836 022 744
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	532 215 418 836 022 744
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 215 418 836 022 744 862
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	418 836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	836 022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	022 744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	802
6 1.589085 -1.98183 1.609 1 1.943077 -1.08982 2.148 1 2.334928 -2.78602 1.663 1 0.672895 2.2929 2.128	002
1 1.943077 -1.08982 2.148 1 2.334928 -2.78602 1.663 1 0.672805 2.2020 2.126	372
1 2.334928 -2.78602 1.663	175
1 0 (7005 0 000 0 100	468
1 0.0/2895 -2.2988 2.130	611
6 1.328083 -2.05214 -3.51	965
1 0.337038 -2.3179 -3.92	105
1 2.005633 -2.90472 -3.63	858
1 1.687319 -1.19201 -4.10	25
6 -1.56949 3.190394 1.520	214
1 -2.32375 3.987583 1.555	297
1 -0.65351 3.529882 2.026	926
1 -1.91047 2.310064 2.087	628
6 -1.4214 3.033574 -3.61	076
1 -0.51182 2.798432 -4.18	008
1 -1.71051 4.080233 -3.75	931
1 -2.22461 2.38642 -3.99	978
6 1.636554 -2.37898 -0.92	703
53 2.635045 -4.19003 -0.97	863
6 -1.67655 3.477015 -1.03	111
53 -2.77287 5.236408 -1.15	13
8 0.081453 0.775098 5.996	55
1 -0.6019 0.185832 6.346	495

6	0.08454	1.245981	-1.03492
6	1.136463	3.121639	-1.81601
6	-0.21977	1.340334	-2.41034
7	0.934352	2.272525	-0.73175
6	-0.27004	0.250082	-0.0452
6	0.35446	0.294714	1.222201
5	1.805058	2.368951	0.575902
7	1.356004	1.220537	1.485361
6	0.097628	-0.43601	2.423986
6	1.775676	1.085203	2.775505
9	1.585286	3.603062	1.170392
9	3.139122	2.242672	0.203081
6	-0.97213	-2.13927	-0.29023
6	-1.27667	-0.76364	-0.37643
6	-2.56868	-0.38037	-0.7976
6	-1.91682	-3.10139	-0.61879
1	-1.69167	-4.16656	-0.57478
6	-3.18539	-2.68317	-1.0287
6	-3.52721	-1.33225	-1.11851
1	-4.53394	-1.05289	-1.42783
1	0.03041	-2.44133	0.020711
1	-2.81971	0.681926	-0.84866
6	-0.92477	0.390152	-3.28993
1	-0.75153	-0.65086	-2.98034
1	-0.62369	0.528165	-4.3376
1	-2.02193	0.535398	-3.24419
6	1.971041	4.348209	-1.72413
1	1.553732	5.054411	-0.99179
1	2.024764	4.840127	-2.70339
1	2.988877	4.097333	-1.39272
6	-0.96678	-1.44373	2.706607
1	-1.1662	-1.47726	3.787441
1	-0.68415	-2.46286	2.395683
1	-1.9045	-1.20095	2.187408
6	2.825821	1.955168	3.369469
1	3.651726	2.10227	2.659524
1	3.215719	1.509075	4.293266
1	2.420932	2.951147	3.609114
6	0.435654	2.580076	-2.86487
53	0.286281	3.341097	-4.75802
6	1.02006	0.064	3.362762
53	1.221818	-0.56807	5.337454
7	-4.18452	-3.68915	-1.37444
8	-5.28097	-3.30213	-1.74319
8	-3.8699	-4.86352	-1.27733

6	0.613258	-0.50976	-0.31161
6	1.17137	-1.70526	-2.1103
6	1.309567	-1.64391	0.178431
7	0.541175	-0.5725	-1.68713
6	0.002424	0.579082	0.392621
6	-0.61622	1.642966	-0.34228
5	-0.01388	0.526708	-2.62965
7	-0.55903	1.65797	-1.71985
6	-1.30743	2.79353	0.115652
6	-1.19403	2.775468	-2.17519
9	-1.04309	0.018293	-3.4219
9	1.006728	1.007228	-3.44997
6	0.937398	1.450204	2.567691
6	0.01036	0.604503	1.858627
6	-0.90879	-0.21594	2.606572
6	0.920161	1.488415	3.947075
1	1.60572	2.144843	4.485214
6	0.025631	0.653369	4.678011
6	-0.87661	-0.20633	3.986184
1	-1.55618	-0.84359	4.554141
1	1.631984	2.066465	1.993623
1	-1.60944	-0.85159	2.06176
1	0.031536	0.672258	5.76785
6	1.630819	-1.99593	1.593756
1	1.940428	-1.11485	2.175642
1	2.449452	-2.72918	1.625211
1	0.767544	-2.43942	2.116723
6	1.324251	-2.03692	-3.55035
1	0.366306	-1.91124	-4.07451
1	1.681389	-3.06691	-3.6749
1	2.043339	-1.35423	-4.03029
6	-1.61343	3.194459	1.521315
1	-2.43181	3.928513	1.536184
1	-0.74463	3.655652	2.019228
1	-1.91656	2.334137	2.136709
6	-1.3626	3.057005	-3.62414
1	-0.41047	2.912619	-4.15405
1	-1.72085	4.082262	-3.78047
1	-2.08706	2.35851	-4.07219
6	1.643056	-2.38213	-0.97147
53	2.694204	-4.17652	-1.01252
6	-1.65352	3.491485	-1.05548
53	-2.70547	5.283519	-1.14735

6	0.487904	-0.5624	-0.2651
6	0.935757	-1.79738	-2.08318
6	1.235729	-1.68967	0.18576
7	0.367502	-0.63493	-1.63567
6	-0.00037	0.600179	0.441907
6	-0.49882	1.724913	-0.31721
5	-0.01879	0.523157	-2.58304
7	-0.3949	1.727659	-1.69139
6	-1.24173	2.873438	0.084775
6	-0.96895	2.86558	-2.19034
9	-1.10971	0.165285	-3.38137
9	1.06324	0.839449	-3.41044
6	0.499649	1.790552	2.589901
6	0.010142	0.637587	1.872789
6	-0.46935	-0.47765	2.655423
6	0.53231	1.81502	3.957303
1	0.937497	2.665729	4.507096
6	0.03403	0.706373	4.703014
6	-0.47748	-0.43536	4.024727
1	-0.87733	-1.26877	4.607396
1	0.891875	2.628568	2.011945
1	-0.87222	-1.34319	2.127657
6	1.805029	-1.99149	1.534971
1	2.083433	-1.08003	2.081
1	2.714254	-2.59975	1.41627
1	1.119779	-2.56746	2.178362
6	0.958664	-2.16969	-3.52224
1	-0.03373	-2.02475	-3.9725
1	1.268424	-3.21513	-3.64541
1	1.656679	-1.52446	-4.07811
6	-1.79507	3.24455	1.423495
1	-2.7089	3.841446	1.284342
1	-1.10449	3.856762	2.026252
1	-2.06144	2.36229	2.020942
6	-1.01	3.164263	-3.6461
1	-0.02428	2.99239	-4.10145
1	-1.31766	4.203406	-3.81822
1	-1.71788	2.494743	-4.15915
6	1.460964	-2.46231	-0.97195
53	2.45035	-4.29422	-1.04071
6	-1.48118	3.586226	-1.10794
53	-2.47233	5.412224	-1.25795
8	0.071498	0.792396	6.025531
1	-0.28992	-0.00164	6.454132

6	0.17341	1.224896	-1.0702
6	1.366653	2.919787	-1.90326
6	-0.23387	1.358726	-2.41345
7	1.133777	2.172802	-0.78231
6	-0.26555	0.314702	-0.06037
6	0.25883	0.414222	1.264771
5	1.870222	2.346344	0.566856
7	1.219601	1.358354	1.5635
6	-0.05684	-0.32133	2.425559
6	1.541946	1.256288	2.888043
9	1.734917	3.659673	1.027786
9	3.235017	2.062586	0.418404
6	-0.7619	-2.01907	-0.85248
6	-1.22419	-0.72662	-0.38684
6	-2.64472	-0.50011	-0.25624
6	-1.66094	-3.0135	-1.16485
1	-1.35229	-3.99662	-1.51747
6	-3.02746	-2.72648	-1.01522
6	-3.54131	-1.49556	-0.56906
1	-4.6191	-1.36425	-0.48404
1	0.313448	-2.17558	-0.94614
1	-2.98136	0.476121	0.095018
6	-1.27405	0.572086	-3.1409
1	-1.11753	-0.51782	-3.06794
1	-1.24602	0.809596	-4.21674
1	-2.29726	0.796572	-2.79561
6	2.35682	4.032514	-1.92166
1	2.035365	4.860051	-1.27174
1	2.484563	4.413869	-2.94332
1	3.330007	3.686862	-1.54321
6	-1.0649	-1.41273	2.575901
1	-0.96143	-1.89148	3.563184
1	-0.93817	-2.21974	1.834022
1	-2.10312	-1.04594	2.51127
6	2.556147	2.140931	3.52658
1	3.494482	2.125874	2.952914
1	2.758898	1.810839	4.553948
1	2.21179	3.185612	3.551097
6	0.536347	2.436995	-2.9135
53	0.441019	3.190015	-4.85769
6	0 768573	0 233165	3 434109
53	0.81733	-0.38114	5.428163
7	-3 99942	-3 79832	-1 35179
8	-5 17344	-3 53283	-1 2167
8	-3.53985	-4.85151	-1.73424
~			

6	0.711005	-0.40469	-0.31384
6	1.115741	-1.71972	-2.08992
6	1.518902	-1.52318	0.178839
7	0.491678	-0.56401	-1.69767
6	0.049785	0.658086	0.391341
6	-0.53314	1.69349	-0.34193
5	0.053385	0.557203	-2.6487
7	-0.48641	1.708875	-1.74269
6	-1.28143	2.874173	0.100755
6	-1.14172	2.797129	-2.18867
9	-0.96033	0.121835	-3.50163
9	1.130748	1.017996	-3.41075
6	0.859408	1.356982	2.664328
6	-0.02939	0.606375	1.869029
6	-0.96732	-0.23552	2.484954
6	0.792392	1.261792	4.062847
1	1.485071	1.843846	4.6749
6	-0.15057	0.43474	4.669504
6	-1.03951	-0.31556	3.878443
1	-1.78335	-0.96209	4.348202
1	1.596589	2.007812	2.186825
1	-1.64629	-0.82584	1.863209
1	-0.2006	0.367564	5.758288
6	2.000809	-1.7209	1.570058
1	2.497013	-0.80751	1.938606
1	2.699241	-2.56667	1.620174
1	1.170151	-1.90979	2.267786
6	1.011395	-2.23244	-3.46666
1	-0.03578	-2.48711	-3.71396
1	1.636969	-3.12078	-3.61486
1	1.303315	-1.44812	-4.18681
6	-1.58462	3.259499	1.500491
1	-2.21536	4.157749	1.525517
1	-0.65909	3.456475	2.067437
1	-2.09272	2.443026	2.038082
6	-1.33315	3.071536	-3.62978
1	-0.40447	2.861912	-4.17973
1	-1.65367	4.106583	-3.79764
1	-2.09837	2.392164	-4.04075
6	1.760386	-2.30656	-0.92161
53	2.773008	-4.11594	-0.97582
6	-1.62466	3.536079	-1.06079
53	-2.71804	5.296754	-1.21279

6	-1.22138	0.032452	0.029514
6	-2.52554	-1.79368	-0.05337
6	-2.6059	0.510442	0.065645
7	-1.23287	-1.37742	-0.01574
6	-0.00045	0.741204	0.047967
6	1.223434	0.038194	0.061892
5	0.003966	-2.30091	0.099193
7	1.241877	-1.37185	0.106305
6	2.605562	0.520501	-0.01665
6	2.535465	-1.78407	0.090028
9	0.064831	-3.1753	-0.98293
9	-0.05828	-3.0381	1.284513
6	0.24733	2.934264	1.221109
6	-0.00445	2.219586	0.039674
6	-0.25997	2.915859	-1.14949
6	0.245889	4.334568	1.216267
1	0.434671	4.905389	2.126872
6	-0.00909	5.02745	0.022255
6	-0.26312	4.317883	-1.16194
1	-0.45721	4.862929	-2.08938
1	0.446937	2.3916	2.148679
1	-0.45894	2.362095	-2.07059
6	-3.08684	1.914801	0.172014
1	-2.4616	2.50826	0.854567
1	-4.12591	1.92943	0.530209
1	-3.05709	2.425442	-0.80536
6	-2.89765	-3.22017	-0.1428
1	-2.62976	-3.62995	-1.13288
1	-3.97371	-3.36028	0.017598
1	-2.33008	-3.8039	0.598503
6	3.078222	1.926857	-0.12599
1	4.115612	1.947754	-0.48835
1	3.047205	2.438524	0.850648
1	2.446072	2.516144	-0.80639
6	2.916473	-3.21126	0.098149
1	2.279453	-3.76653	0.802281
1	3.973022	-3.33642	0.367454
1	2.75676	-3.6631	-0.89753
6	-3.37719	-0.62556	-0.00638
53	-5.44853	-0.71118	-0.03923
6	3.381454	-0.61449	0.009876
53	5.451299	-0.70242	-0.07467
8	-0.00012	6.376386	0.061828
1	-0.18645	6.743148	-0.81545

6	0.220583	1.192652	-1.05171
6	1.372322	2.900645	-1.87849
6	-0.18134	1.30733	-2.44152
7	1.164239	2.182366	-0.77578
6	-0.21474	0.293888	-0.06389
6	0.306912	0.40204	1.235525
5	1.882873	2.417806	0.591059
7	1.252602	1.372889	1.566197
6	0.00219	-0.37425	2.423139
6	1.550905	1.26267	2.860024
9	1.639161	3.697909	1.042724
9	3.239527	2.186115	0.459791
6	-0.823	-2.01462	-0.84301
6	-1.22269	-0.73901	-0.38417
6	-2.6006	-0.45992	-0.2396
6	-1.76182	-2.98069	-1.15158
1	-1.475	-3.96916	-1.50738
6	-3.14347	-2.69248	-1.00809
6	-3.55113	-1.41536	-0.54422
1	-4.61738	-1.22024	-0.44061
1	0.241572	-2.23737	-0.95571
1	-2.91585	0.524851	0.11638
6	-1.15955	0.466538	-3.184
1	-0.87138	-0.59405	-3.15962
1	-1.22443	0.797557	-4.22845
1	-2.15851	0.523258	-2.72798
6	2.296555	4.052589	-1.92117
1	1.814213	4.918996	-1.43943
1	2.546619	4.320334	-2.95404
1	3.206842	3.827101	-1.34954
6	-0.94321	-1.51639	2.551711
1	-0.93118	-1.90168	3.579371
1	-0.68105	-2.32906	1.859401
1	-1.96864	-1.21364	2.295017
6	2.502199	2.16423	3.542102
1	3.36547	2.362722	2.892847
1	2.828938	1.74241	4.499389
1	2.00773	3.130792	3.733575
6	0.541563	2.374081	-2.93559
53	0.490872	3.148616	-4.85045
6	0.781119	0.176995	3.420075
53	0.87711	-0.39608	5.402874
7	-4.09517	-3.65618	-1.32306
8	-5.32337	-3.37777	-1.19108
8	-3.71416	-4.79056	-1.73687